Question

In: Physics

Chapter #14 Question #12, The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun...

Chapter #14

Question #12,

The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘.
Part A
What will be the equilibrium temperature when a 265 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 865 g of water at 12.0 ∘C?
Express your answer using three significant figures.

T =  

Question #13

High-altitude mountain climbers do not eat snow, but always melt it first with a stove. To see why, calculate the energy absorbed from a climber's body under the following conditions. The specific heat of ice is 2100 J/kg⋅C∘, the latent heat of fusion is 333 kJ/kg, the specific heat of water is 4186 J/kg⋅C∘.
Part A
Calculate the energy absorbed from a climber's body if he eats 0.85 kg of -15∘C snow which his body warms to body temperature of 37∘C.
Express your answer to two significant figures and include the appropriate units.

Q1 =  
Part B
Calculate the energy absorbed from a climber's body if he melts 0.85 kg of -15∘C snow using a stove and drink the resulting 0.85 kg of water at 2∘C, which his body has to warm to 37∘C.
Express your answer to two significant figures and include the appropriate units.

Q2 =  

Solutions

Expert Solution


Related Solutions

The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 225 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 835 g of water at 14.0 ∘C ? Express your answer using three significant figures.
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. Part A What will be the equilibrium temperature when a 275 g block of copper at 245 ∘C is placed in a 135 g aluminum calorimeter cup containing 855 g of water at 15.0 ∘C? Express your answer using three significant figures.' T=  ∘C
Specific heat of ice: 2.09 J/(g⋅∘C Specific heat of liquid water: 4.18 J/(g⋅∘C) Enthalpy of fusion:...
Specific heat of ice: 2.09 J/(g⋅∘C Specific heat of liquid water: 4.18 J/(g⋅∘C) Enthalpy of fusion: ΔHfus=334J Enthalpy of vaporization: ΔHvap=2250 J/g How much heat energy, in kilojoules, is required to convert 47.0 g of ice at −−18.0 ∘C∘C to water at 25.0 ∘C?
1. A 5.88 kg piece of granite with a specific heat of 0.803 J g-1 °C-1...
1. A 5.88 kg piece of granite with a specific heat of 0.803 J g-1 °C-1 and a temperature of 85.1 °C is placed into 2.00 L of water at 19.0 °C. When the granite and water come to the same temperature, what will the temperature be? 2. The combustion of methane (the chief component of natural gas) follows the equation: CH4(g) + 2O2(g) → CO2(g) + 2H2O(g) ∆H° for this reaction is -802.3 kJ. How many grams of methane...
A chunk of brass with mass 0.6 kg, with specific heat 380 J/(kg· K), and with...
A chunk of brass with mass 0.6 kg, with specific heat 380 J/(kg· K), and with temperature 400 K is placed in 0.6 kg of water, with specific heat 4186 J/(kg· K), and with temperature 280 K. The water and the brass are in an insulated container and come to thermal equilibrium. Find the final temperature in kelvins (closest answer). AND The asteroid Oumuamua observed this year in November traveled around the sun at a speed of 87,500 m/s. Its...
I just need to find the specific heat of copper, steel and aluminum. Experiment 12 Specific...
I just need to find the specific heat of copper, steel and aluminum. Experiment 12 Specific Heat Capacity [Calorimetry) See the Introduction section onpage L2-2. A metal sample of 'mass ms is heated in boiling water to a high temperature of Tl, - 101.3 oC. It is then quickly placed in a calorimeter cup of mass mc = 5T .9 grams containing liquid water of mass m*, both at an initial cool temperature T.. The specific heat capacity of liquid...
the specific heat of copper (0.092) and the specific heat of silver is (0.056). The mass...
the specific heat of copper (0.092) and the specific heat of silver is (0.056). The mass of silver is 1.02 times greater than the mass of the copper. The heat gained by the silver is 1.33 times the heat gained by copper. The temperature change of copper is 20 degrees Celsius. What is the temperature change of the silver?
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C,...
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C, the molar heats of fusion and vaporization for water are 6.02 kJ/mol and 40.6 kJ/mol, respectively, and the specific heat capacity of water is 4.18 J/g°C, calculate the total quantity of heat evolved when 20.4 g of steam at 162°C is condensed, cooled, and frozen to ice at -50.°C.
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C,...
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C, the molar heats of fusion and vaporization for water are 6.02 kJ/mol and 40.6 kJ/mol, respectively, and the specific heat capacity of water is 4.18 J/g°C, calculate the total quantity of heat evolved when 13.2 g of steam at 192°C is condensed, cooled, and frozen to ice at -50.°C.
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C,...
Given that the specific heat capacities of ice and steam are 2.06 J/g°C and 2.03 J/g°C, the molar heats of fusion and vaporization for water are 6.02 kJ/mol and 40.6 kJ/mol, respectively, and the specific heat capacity of water is 4.18 J/g°C, calculate the total quantity of heat evolved when 27.1 g of steam at 216°C is condensed, cooled, and frozen to ice at -50.°C. ______KJ Please show the steps
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT