Question

In: Physics

A metal sphere contains zero net charge. a. Explain why it is incorrect to say that...

A metal sphere contains zero net charge.

a. Explain why it is incorrect to say that the ball has no charge.

b. Is it possible for the ball to have a positive (or negative) charge on one side yet still have zero net charge? If so, describe how this could be done.

Solutions

Expert Solution

(a) A metal sphere has 0 net charge. This means that the net value of positive and negative charges are equal.

So, if a sphere has + 1C and - 1C charge , its net charge will be zero, but it has both positive and negative charge

So it is incorrect to say that the ball has no charge

(b) Yes, it is possible.

Suppose we take an uncharged metal sphere of inner radius R and thickness t.

We place a point charge Q at the centre.

Now, the property of a conductor is that charge occurs only at the surfaces and the electric field inside a conductor must be 0 [Here, in thickness t]

Let charge accumulated in inner surface be q.

Now, electric field in the thickness t = 0

=> electric field due to Q + electric field due to charge on inner surface = 0

=> kQ/r2 + kq/r2 = 0

=> Q +q =0

=> q = -Q

Since the sphere has net 0 charge, charge on outer surface q' = 0-q = Q

This is one of the ways to achieve the stated


Related Solutions

A solid metal sphere of radius a = 2.5 cm has a net charge Qin =...
A solid metal sphere of radius a = 2.5 cm has a net charge Qin = - 3 nC (1 nC = 10-9C). The sphere is surrounded by a concentric conducting spherical shell of inner radius b = 6 cm and outer radius c = 9 cm. The shell has a net charge Qout = + 2 nC. What is V0, the electric potential at the center of the metal sphere, given the potential at infinity is zero?
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B of radius 20.0 cm carries −2.00 μC of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres? Charge on sphere A (μC)? Charge on sphere B (μC)?
A small metal sphere, A, carrying a charge of +15.0μC is at the origin. An identical...
A small metal sphere, A, carrying a charge of +15.0μC is at the origin. An identical sphere, B, carrying a charge of -18.0μC is at~ xB= 4.0ˆi cm and a third sphere, C,carrying +25.0μC is at~x C= 3.0ˆj cm. (a) Find the total electrical force exerted on sphere A. (b) Let us view sphere A as a probe charge which we are using to measure the field due to spheres B and C. Use your result from part b) to...
A small metal sphere, A, carrying a charge of +15.0 µC is at the origin. An...
A small metal sphere, A, carrying a charge of +15.0 µC is at the origin. An identical sphere, B, carrying a charge of -18.0 µC is at ~xB = 4.0ˆi cm and a third sphere, C, carrying +25.0 µC is at ~xC = 3.0ˆj cm. (a) Find the total electrical force exerted on sphere A. (b) Let us view sphere A as a probe charge which we are using to measure the field due to spheres B and C. Use...
A metal sphere has an electrical charge of -2*10 ^- 6 C. Calculate the magnitude and...
A metal sphere has an electrical charge of -2*10 ^- 6 C. Calculate the magnitude and direction of the E field at a point 10cm to the right of the sphere.
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B carries a charge of +q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Last, sphere C is touched to sphere B and separated from it. For the following questions, express your answers in terms of q. (a) How much charge ends up...
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -10q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -10q. Sphere B carries a charge of -3q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. 1. How much charge ends up on sphere C? 2. What is the total charge on the...
A metal sphere of radius a has a uniform (free) charge density σf on its surface....
A metal sphere of radius a has a uniform (free) charge density σf on its surface. The permittivity of the dielectric region surrounding the sphere varies as , where r is the radial coordinate. (1 pts) Determine the polarization P and electric field intensity E inside the sphere. (3 pts) Determine the polarization P and electric field intensity E in the dielectric. (5 pts) Calculate all bound charge densities, ρb and σb. Is the dielectric homogeneous? (1 pts) Test whether...
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +9q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +9q. Sphere B carries a charge of -q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. (a) What is the ratio of the final charge on sphere C to q? What is the...
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +3q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +3q. Sphere B carries a charge of -q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. (a) What is the ratio of the final charge on sphere C to q? What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT