Question

In: Physics

A solid metal sphere of radius a = 2.5 cm has a net charge Qin =...

A solid metal sphere of radius a = 2.5 cm has a net charge Qin = - 3 nC (1 nC = 10-9C). The sphere is surrounded by a concentric conducting spherical shell of inner radius b = 6 cm and outer radius c = 9 cm. The shell has a net charge Qout = + 2 nC. What is V0, the electric potential at the center of the metal sphere, given the potential at infinity is zero?

Solutions

Expert Solution


Related Solutions

Consider a solid, insulating sphere of radius a = 5.00 cm carrying a net positive charge...
Consider a solid, insulating sphere of radius a = 5.00 cm carrying a net positive charge of Q = 3.00 μC uniformly distributed throughout its volume. Concentric with this sphere is a hollow, conducting spherical shell with inner radius b = 10.0 cm and outer radius c = 15.0 cm having a net negative charge of q = -1.00 μC. a) Give the expression from Gauss’s Law for the magnitude of electric field inside the insulating sphere for 0 ≤...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B of radius 20.0 cm carries −2.00 μC of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres? Charge on sphere A (μC)? Charge on sphere B (μC)?
A solid metal sphere of radius a = 1.30 cm is surrounded by a concentric spherical...
A solid metal sphere of radius a = 1.30 cm is surrounded by a concentric spherical metal shell of inner radius b = 3.40 cm and outer radius c = 3.90 cm. The inner sphere has a net charge of Q1 = 3.30 μC, and the outer spherical shell has a net charge of Q2 = -8.00 μC. What is the radial component of the electric field Er at a point located at radius r = 3.10 cm, i.e. between...
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of...
A solid nonconducting sphere of radius R = 5.5 cm has a nonuniform charge distribution of volume charge density ρ = (15.4 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It...
A solid conducting sphere of radius 1.00 cm has a uniform charge of -5.00 µC. It is surrounded by a concentric spherical shell, with a radius of 2.50 cm, that has a uniform charge of +6.00 µC. Determine the magnitude and direction of the electric field (a) at the center of the sphere (r = 0), (b) at r = 0.500 cm, (c) at r = 2.00 cm, and (d) at r = 3.00 cm.
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00uC. Find the electric field at a) r= 1.00 cm b) r= 3.00 cm c) r= 4.50 cm d) r= 7.00 cm from the center of this charge configuration.
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly over its surface. Let A be a point 1.8 cm from the center of the sphere, S be a point on the surface of the sphere, and B be a point 5.4 cm from the center of the sphere. What are the electric potential differences (a)VS – VB and (b)VA – VB?
3. A solid conducting sphere of radius b carries a net charge of -Q. Select the...
3. A solid conducting sphere of radius b carries a net charge of -Q. Select the correct option on the right panel, for the electric potential V(r) at a radial distance of ( b/2 ) from the center of the sphere, with respect to the potential of the sphere at infinity.
A solid sphere of charge is centered at the origin and has radius R = 10...
A solid sphere of charge is centered at the origin and has radius R = 10 cm. Instead of being uniformly charged, the charge density varies with radial position: ρ(r)=ρ0ar. Take a=5.1 m and ρ0=3.7 C/m3. What is the total charge of the sphere? What is the electric flux through a sherical surface of radius R/2 that is concentric with the charged sphere? What is the flux through a spherical surface of radius 2R that surrounds the charged sphere, but...
2. A solid insulating sphere with a radius ? = 12 ?? has a volume charge...
2. A solid insulating sphere with a radius ? = 12 ?? has a volume charge density which varies with radial distance ? as given by ? = 4 × 103 ?0 (1 + ? ? ) ?/?3 . Calculate the electric field magnitude at ? = 2? by using Gauss’s Law. (?0 = 8.85 × 10−12 ? 2/??2 )
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT