Question

In: Statistics and Probability

A company produces x units of product A and y units of product B (both in hundreds per month). The monthly profit equation (in thousands of dollars) is given by P(x, y) = -4x2 + 4xy - 3y2 + 4x + 10y + 81

A company produces x units of product A and y units of product B (both in hundreds per month). The monthly profit equation (in thousands of dollars) is given by

P(x, y) = -4x2 + 4xy - 3y2 + 4x + 10y + 81

(A) Find Px(1, 3) and interpret the results.

(B) How many of each product should be produced each month to maximize profit? What is the maximum profit?

Solutions

Expert Solution

P(x, y) = -4x2 + 4xy – 3y2 + 4x + 10y + 81

 

A)

Px(x, y) = -8x + 4y + 4

Px(1, 3) = -8 + 12 + 4

              = -4 + 2

             = 8

 

B)

Px(x, y) = -8x + 4y + 4

Py(x, y) = 4x – 6y + 10

 

Px = 0 ⇒  -2x + y = -1

Py = 0 ⇒  2x – 3y = -5

-2y = -6

⇒ y = 3

 

2x – 6 = -5

⇒ 2x = 1

⇒ (1/2, 3)

 

Pxx = -8, Pxy = 4, Pyy = -6

 

D = 48 – 16 > 0

Pxx = -8 < 0

 

∴ To maximize profit x = ½,  y = 3.


A)

Px(x, y) = -8x + 4y + 4

Px(1, 3) = -8 + 12 + 4

              = -4 + 2

             = 8

 

B) ∴ To maximize profit x = ½,  y = 3.

Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT