In: Statistics and Probability
A company produces x units of product A and y units of product B (both in hundreds per month). The monthly profit equation (in thousands of dollars) is given by
P(x, y) = -4x2 + 4xy - 3y2 + 4x + 10y + 81
(A) Find Px(1, 3) and interpret the results.
(B) How many of each product should be produced each month to maximize profit? What is the maximum profit?
P(x, y) = -4x2 + 4xy – 3y2 + 4x + 10y + 81
A)
Px(x, y) = -8x + 4y + 4
Px(1, 3) = -8 + 12 + 4
= -4 + 2
= 8
B)
Px(x, y) = -8x + 4y + 4
Py(x, y) = 4x – 6y + 10
Px = 0 ⇒ -2x + y = -1
Py = 0 ⇒ 2x – 3y = -5
-2y = -6
⇒ y = 3
2x – 6 = -5
⇒ 2x = 1
⇒ (1/2, 3)
Pxx = -8, Pxy = 4, Pyy = -6
D = 48 – 16 > 0
Pxx = -8 < 0
∴ To maximize profit x = ½, y = 3.
A)
Px(x, y) = -8x + 4y + 4
Px(1, 3) = -8 + 12 + 4
= -4 + 2
= 8
B) ∴ To maximize profit x = ½, y = 3.