In: Finance
Problem 3-7
The following table contains the demand from the last 10 months:
MONTH | ACTUAL DEMAND |
1 | 33 |
2 | 36 |
3 | 37 |
4 | 38 |
5 | 42 |
6 | 38 |
7 | 41 |
8 | 43 |
9 | 40 |
10 | 41 |
a. Calculate the single exponential smoothing
forecast for these data using an α of 0.20 and an initial
forecast (F1) of 33. (Round
your intermediate calculations and answers to 2 decimal
places.)
Month | Exponential Smoothing |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
b. Calculate the exponential smoothing with
trend forecast for these data using an α of 0.20, a
δ of 0.20, an initial trend forecast
(T1) of 1.00, and an initial exponentially
smoothed forecast (F1) of 32. (Round
your intermediate calculations and answers to 2 decimal
places.)
Month | FITt |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
c-1. Calculate the mean absolute deviation
(MAD) for the last nine months of forecasts. (Round your
intermediate calculations and answers to 2 decimal
places.)
MAD | |
Single exponential smoothing forecast | |
Exponential smoothing with trend forecast | |
c-2. Which is best?
Exponential smoothing with trend forecast | |
Single exponential smoothing forecast |
References
Worksheet
Solution a): Calculate the single exponential smoothing forecast
The formula for Exponential Smoothing is=Ft=Ft−1+α(At−1−Ft−1) | ||||||
As per the problem a):α=0.20and F1=33 Ft=33+0.20*(33-33)=33 |
Month | Actual Demand | Exponentially Smoothed Forecast and alpha=0.20 | |
1 | 33 | 33 | |
2 | 36 | 33 | |
3 | 37 | 33.6 | |
4 | 38 | 34.28 | |
5 | 42 | 35.02 | |
6 | 38 | 36.42 | |
7 | 41 | 36.74 | |
8 | 43 | 37.59 | |
9 | 40 | 38.67 | |
10 | 41 | 38.94 |
b) The formula for exponential smoothing using trend forecasting is= AF= At+Ft; Ft=Ft−1+α(At−1−Ft−1) and Tt=Tt-1+β(Ft−Ft−1). AFt = Adjusted Forecast for period t, Ft = Forecast for period t, Ft−1 = Forecast for period (t-1), At−1 = Actual for period (t-1), Tt = Trend for period T, Tt−1 = Trend for period (t-1), α = Apha = Exponential smoothing forecast=0.20 β = Beta = Exponential smoothing trend = 0.20 .
α=0.20 and β=0.20
Ft=F2=33+0.2*(33-33)=33 and Tt=T2=1+0.2*(33-33)= 1; FIT2=33+1.0=34
Month | Actual Demand | Exponentially Smoothed Forecast and alpha=0.20 | MAD | Forcast (Ft) | Trend (Tt) | FITt | MAD |
1 | 33 | 33 | 32 | 1 | 33 | ||
2 | 36 | 33 | 3 | 33 | 1 | 34 | 2.00 |
3 | 37 | 33.6 | 3.4 | 34.40 | 1.08 | 35.48 | 1.52 |
4 | 38 | 34.28 | 3.72 | 35.78 | 1.14 | 36.92 | 1.08 |
5 | 42 | 35.02 | 6.98 | 37.14 | 1.18 | 38.32 | 3.68 |
6 | 38 | 36.42 | 1.58 | 39.06 | 1.33 | 40.39 | 2.39 |
7 | 41 | 36.74 | 4.26 | 39.91 | 1.24 | 41.15 | 0.15 |
8 | 43 | 37.59 | 5.41 | 41.12 | 1.23 | 42.35 | 0.65 |
9 | 40 | 38.67 | 1.33 | 42.48 | 1.26 | 43.73 | 3.73 |
10 | 41 | 38.94 | 2.06 | 42.99 | 1.11 | 44.09 | 3.09 |
3.53 | 2.03 |
c1)The mean absolute deviation (MAD) for the last nine months of forecasts
a)Single exponential smoothing forecast=3.53
b) Exponential smoothing with trend forecast=2.03
c2)Based on a mean absolute deviation criterion, Exponential smoothing with trend forecast=2.03 is best with over the exponential smoothing with α=0.20.