In: Statistics and Probability
Because the marketplace already contains several successful nutrition bars, you need to develop an effective marketing strategy. In particular, you need to determine the effect that price and various in-store promotions have on the sales of OmniPower. Before marketing the bar nationwide, you conduct a test-market study of OmniPower sales, using a sample of 34 stores in a national supermarket chain. You employ a number of different strategies across the stores, based on recommendations by a consultant, In-Store Placements Group. For example, the promotional budget is varied across the stores. Some stores spend $200 per month, others spend $400 per month, and still others spend $600 per month. In some stores, the products were placed on the endcap in the produce section. Other stores, placed the product on the endcap in the beverage section. In addition, some stores had coupon dispensers, while others did not. You hope that you can analyze the sales in these stores to understand which strategy seems to be the most effective.
In-Store Placements Group’s vice-president, Claire Deborahs has written you a letter touting a number of findings, based on her analysis of the test market data. You are charged with looking at the data to understand whether Ms. Deborah’s inferences are justified. Do a complete analysis using the tools you have learned in this class. Develop a deep understanding of the relationships present in the data. Develop a report for your company based on your findings. In addition, your president, Rosa Rodriguez wants you to write her a short brief describing your findings. It should include a discussion of the findings that Ms. Deborah highlighted in her letter and whether they are accurate. She will be meeting with Ms. Deborahs next week and wants to be prepared.
From the Desk of
Claire Deborahs, Vice President, Customer Relations
To my friends at OmniFoods Marketing:
As you know, in reviewing your test marketing of OmniPower bars, my colleagues and I at ISPG suggested how your sales could be enhanced. From our experience marketing similar products, we told you that the shelf locations of a product and the presence of in-store coupon dispensers can enhance supermarket sales.
We are happy to report the positive correlation of these factors and sales of OmniPower bars. You can see the effects, if you look through the data. I think the most striking thing is the only store with over 4000 unit sales and only 200 in promotional dollars was a store with coupon dispensers!
We can talk at a later time about extending our marketing agreement. In the meantime, congratulations on a successful test marketing venture.
Sincerely,
Claire Deborahs
Bars | Price | Promotion | End-Cap | Dispensers |
4141 | 59 | 200 | Produce | Yes |
3842 | 59 | 200 | Produce | Yes |
3056 | 59 | 200 | Beverage | No |
3519 | 59 | 200 | Beverage | Yes |
4226 | 59 | 400 | Produce | No |
4630 | 59 | 400 | Beverage | Yes |
3507 | 59 | 400 | Beverage | Yes |
3754 | 59 | 400 | Produce | Yes |
5000 | 59 | 600 | Produce | No |
5120 | 59 | 600 | Produce | No |
4011 | 59 | 600 | Beverage | Yes |
5015 | 59 | 600 | Beverage | No |
1916 | 79 | 200 | Beverage | No |
675 | 79 | 200 | Beverage | No |
3636 | 79 | 200 | Produce | No |
3224 | 79 | 200 | Produce | Yes |
2295 | 79 | 400 | Beverage | No |
2730 | 79 | 400 | Beverage | Yes |
2618 | 79 | 400 | Beverage | No |
4421 | 79 | 400 | Produce | Yes |
4113 | 79 | 600 | Produce | Yes |
3746 | 79 | 600 | Beverage | No |
3532 | 79 | 600 | Beverage | No |
3825 | 79 | 600 | Beverage | No |
1096 | 99 | 200 | Beverage | Yes |
761 | 99 | 200 | Beverage | Yes |
2088 | 99 | 200 | Produce | Yes |
820 | 99 | 200 | Beverage | Yes |
2114 | 99 | 400 | Produce | Yes |
1882 | 99 | 400 | Beverage | No |
2159 | 99 | 400 | Produce | No |
1602 | 99 | 400 | Beverage | Yes |
3354 | 99 | 600 | Produce | No |
2927 | 99 | 600 | Produce | No |
The regression output is:
R² | 0.868 | |||||
Adjusted R² | 0.850 | |||||
R | 0.932 | |||||
Std. Error | 487.184 | |||||
n | 34 | |||||
k | 4 | |||||
Dep. Var. | Bars | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 4,52,10,568.1501 | 4 | 1,13,02,642.0375 | 47.62 | 2.44E-12 | |
Residual | 68,83,109.2911 | 29 | 2,37,348.5962 | |||
Total | 5,20,93,677.4412 | 33 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=29) | p-value | 95% lower | 95% upper |
Intercept | 5,432.8719 | |||||
Price | -53.0447 | 5.2357 | -10.131 | 4.91E-11 | -63.7530 | -42.3364 |
Promotion | 3.5650 | 0.5652 | 6.307 | 6.88E-07 | 2.4090 | 4.7210 |
End-Cap | 815.3759 | 169.3097 | 4.816 | 4.23E-05 | 469.0987 | 1,161.6531 |
Dispensers | 100.3259 | 180.4650 | 0.556 | .5825 | -268.7665 | 469.4183 |
The regression equation is:
Bars = 5,432.8719 -53.0447*Price + 3.5650*Promotion + 815.3759*End-Cap + 100.3259*Dispensers
86.8% of the variation in Bars is explained.
When the coupon dispensers are there and the end-cap is produced, the bars will see the maximum profit.
There is a strong positive relationship between the variables.