Question

In: Physics

You attach a 1 kg block to a horizontal spring with a constant of k =...

  1. You attach a 1 kg block to a horizontal spring with a constant of k = 25 N/m and set it oscillating on a frictionless surface. You’ve set up a gate that can read the velocity at the equilibrium point of the simple harmonic motion and find it is 50 cm/s, moving to the right. Assume the positive direction is to the right.

    1. What is the angular frequency, ω?

    2. What is the phase angle, φ0, assuming that t = 0 is the moment when you read the velocity at the

      equilibrium point?

    3. What is the amplitude, A?

    4. Write down the equations describing x(t) and a(t), filling in the values for A,ω, and φ0.

    5. What is the magnitude of the acceleration when x(t) = A/2? Since I am asking about magnitude you don’t need to worry about which of the two possible positions that are A/2 or the direction of travel - in other words you don’t need the phase. Any of the four possible phases for the position A/2 will do.

Solutions

Expert Solution


Related Solutions

You attach a 1.50 kg block to a horizontal spring that is fixed at one end....
You attach a 1.50 kg block to a horizontal spring that is fixed at one end. You pull the block until the spring is stretched by 0.500 m and release it from rest. Assume the block slides on a horizontal surface with negligible friction. The block reaches a speed of zero again 0.500 s after release (for the first time after release). What is the maximum speed of the block (in m/s)?
1. A 2.0 kg object is attached to a horizontal spring of force constant k =...
1. A 2.0 kg object is attached to a horizontal spring of force constant k = 4.3 kN/m. The spring is stretched 10 cm from equilibrium and released. Find its total energy. ..... J ------------------------ 2. Find the total energy of a 2.0 kg object oscillating on a horizontal spring with an amplitude of 10 cm and a frequency of 2.9 Hz. ..... J ------------------------------- 3. Find the length of a simple pendulum if its frequency for small amplitudes is...
A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m...
A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m has a simple harmonic motion (SHM) with an amplitude of 0.11 m. The figure above shows one complete cycle of the SHM, and the vertical green dashed line indicates the equilibrium position of the block. (d) Calculate the block 's velocity at 0.045 s. The velocity can be positive, zero or negative. Notice that the unit of angular frequency ω is rad/s, the unit...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.4 kN/m. The block is pulled to the right so that the spring is stretched 5.8 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 38 N. (a) What is the kinetic energy of the block when it has moved 2.2 cm from...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 2.9 kN/m. The block is pulled to the right so that the spring is stretched 8.4 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 2.7 cm from...
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
You attach a 2.50 kg mass to a horizontal spring that is fixed at one end....
You attach a 2.50 kg mass to a horizontal spring that is fixed at one end. You pull the mass until the spring is stretched by 0.500 m and release it from rest. Assume the mass slides on a horizontal surface with negligible friction. The mass reaches a speed of zero again 0.300 s after release (for the first time after release). What is the maximum speed of the mass (in m/s)?
A 2.50 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.50 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 835 N/m . The coefficient of kinetic friction between the floor and the block is 0.41 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0130 m from its initial position?...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A mass of 1.20 kg is attached to a horizontal spring with a spring constant of...
A mass of 1.20 kg is attached to a horizontal spring with a spring constant of 125 N/m. It is stretched to a length of 20.0 cm and released from rest. a) Write down an equation for the position and velocity of the block as a function of time. b) What is the maximum magnitude of acceleration that the block experiences? Is this consistent with Hooke’s Law? c) When the block is to the right of the equilibrium position with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT