In: Statistics and Probability
Despite the growth in digital entertainment, the nation’s 400 amusement parks have managed to hold on to visitors. A manager collects data on the number of visitors (in millions) to amusement parks in the United States. A portion of the data is shown in the accompanying table.
B-1) Estimate a linear trend model and an exponential trend model for the sample. (Round your answers to 2 decimal places.)
Variable | Linear Trend | Exponential Trend | |
---|---|---|---|
Intercept | ? | ? | |
T | ? | ? | |
Standard Error | ? | ? |
B-2 Calculate the MSE for both trends. (Do not round estimates or intermediate calculations. Round final answers to 2 decimal places.)
Linear Trend | Exponential Trend | |
---|---|---|
MSE | ? | ? |
b-3. By comparing MSE, which of the above methods perform better? Exponential or Linear?
c-1. Using the model of best fit, make a forecast for visitors to amusement parks in 2008. (Do not round estimates or intermediate calculations. Round your answer to 1 decimal place.)
Y Hat or Y^ | ? | Million Visitors |
c-2. Using the model of best fit, make a forecast for visitors to amusement parks in 2009. (Do not round estimates or intermediate calculations. Round your answer to 1 decimal place.)
Y Hat or Y^ | ? | Million Views |
Year | Visitors |
2000 | 354 |
2001 | 338 |
2002 | 336 |
2003 | 310 |
2004 | 358 |
2005 | 375 |
2006 | 317 |
2007 | 305 |
a)
linear
y =a + b*t
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.33 | |||||
R Square | 0.11 | |||||
Adjusted R Square | -0.04 | |||||
Standard Error | 25.33 | |||||
Observations | 8 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 476.72 | 476.72 | 0.74 | 0.42 | |
Residual | 6 | 3851.15 | 641.86 | |||
Total | 7 | 4327.88 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 351.79 | 19.74 | 17.82 | 0.00 | 303.48 | 400.09 |
t | -3.37 | 3.91 | -0.86 | 0.42 | -12.93 | 6.20 |
exponential
ln y = a+ b*t
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.35 | |||||
R Square | 0.12 | |||||
Adjusted R Square | -0.02 | |||||
Standard Error | 0.07 | |||||
Observations | 8 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 0.00 | 0.00 | 0.85 | 0.39 | |
Residual | 6 | 0.03 | 0.01 | |||
Total | 7 | 0.04 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 5.86 | 0.06 | 100.92 | 0.00 | 5.72 | 6.01 |
t | -0.01 | 0.01 | -0.92 | 0.39 | -0.04 | 0.02 |
year | y | t | ln y | y^ linear | ei^2 | y^ exponential | ei^2 |
2000 | 354 | 1 | 5.86929691 | 348.416667 | 31.1736111 | 348.5143794 | 30.0920335 |
2001 | 338 | 2 | 5.8230459 | 345.047619 | 49.6689342 | 344.8404123 | 46.79123988 |
2002 | 336 | 3 | 5.81711116 | 341.678571 | 32.2461735 | 341.2051753 | 27.09385032 |
2003 | 310 | 4 | 5.7365723 | 338.309524 | 801.429138 | 337.6082603 | 762.2160391 |
2004 | 358 | 5 | 5.88053299 | 334.940476 | 531.741638 | 334.0492633 | 573.6377892 |
2005 | 375 | 6 | 5.92692603 | 331.571429 | 1886.04082 | 330.5277844 | 1977.777956 |
2006 | 317 | 7 | 5.75890177 | 328.202381 | 125.493339 | 327.0434283 | 100.8704523 |
2007 | 305 | 8 | 5.72031178 | 324.833333 | 393.361111 | 323.5958035 | 345.8039096 |
9 | 321.464286 | 320.1845229 | |||||
10 | 318.095238 | 316.8092033 | |||||
Linear | Exponential | ||||||
MSE | 481.394345 | 483.0354088 |
Variable | Linear Trend | Exponential Trend |
Intercept | 351.79 | 5.86 |
T | -3.37 | -0.01 |
Standard Error | 25.33 | 0.07 |
b) | ||
MSE | 481.39 | 483.04 |
b-3 | linear is better | |
c) | year | y^ linear |
2008 | 321.5 | |
2009 | 318.1 |
Please rate if helpful