In: Statistics and Probability
Despite the growth in digital entertainment, the nation’s 400 amusement parks have managed to hold on to visitors. A manager collects data on the number of visitors (in millions) to amusement parks in the United States. A portion of the data is shown in the accompanying table.
| Year | Visitors | 
| 2000 | 329 | 
| 2001 | 319 | 
| ⋮ | ⋮ | 
| 2007 | 333 | 
SOURCE: International Association of Amusement Parks and
Attractions.
Click here for the Excel Data File
| Year | Visitors | 
| 2000 | 329 | 
| 2001 | 319 | 
| 2002 | 308 | 
| 2003 | 302 | 
| 2004 | 308 | 
| 2005 | 319 | 
| 2006 | 357 | 
| 2007 | 333 | 
a. Estimate the linear trend model to make forecasts for 2008. (Round your answers to 2 decimal places.)
yˆ =
b. Estimate the exponential trend model to make
forecasts for 2008. (Round your answers to 2 decimal
places.)
yˆ =
a)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 1 | 329 | 12.25 | 50.77 | -24.94 | 
| 2 | 319 | 6.25 | 8.27 | 7.19 | 
| 3 | 308 | 2.25 | 192.52 | 20.81 | 
| 4 | 302 | 0.25 | 395.02 | 9.94 | 
| 5 | 308 | 0.25 | 192.52 | -6.94 | 
| 6 | 319 | 2.25 | 8.27 | -4.31 | 
| 7 | 357 | 6.25 | 1233.77 | 87.81 | 
| 8 | 333 | 12.25 | 123.77 | 38.94 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 36 | 2575 | 42 | 2204.9 | 128.50 | 
| mean | 4.50 | 321.88 | SSxx | SSyy | SSxy | 
sample size ,   n =   8  
       
here, x̅ = Σx / n=   4.50   ,
    ȳ = Σy/n =   321.88  
          
       
SSxx =    Σ(x-x̅)² =    42.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   128.5  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   128.5  
/   42.000   =   3.0595
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
308.1071          
          
       
so, regression line is   Ŷ =  
308.1071   +   3.0595  
*x
Predicted Y at X=   9   is  
           
   
Ŷ =   308.10714   +  
3.059524   *   9   =  
335.64
forecasts for 2008 = 335.64
..................
b)
![]()  | 
||
exponential trend model to make forecasts for 2008 =
335.04