Question

In: Advanced Math

solve: y''+8y'+7y=f(t), y(0)=y'(0)=0, expressing your answer in terms of a convolution, using partial fractions for: i)f(t)=e^t...

solve: y''+8y'+7y=f(t), y(0)=y'(0)=0, expressing your answer in terms of a convolution, using partial fractions for:

i)f(t)=e^t

ii)f(t)=t^1/2

iii) f(t)=2sin(2t)

Solutions

Expert Solution


Related Solutions

solve: y''+8y'+7'=f(t), y(0)=y'(0)=0, expressing your answer in terms of a convolution, using partial fractions for: i)f(t)=e^t...
solve: y''+8y'+7'=f(t), y(0)=y'(0)=0, expressing your answer in terms of a convolution, using partial fractions for: i)f(t)=e^t ii)f(t)=t^1/2 iii) f(t)=2sin(2t)
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) =...
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) = 0 (Answer using fractions)
y''+ 3y'+2y=e^t y(0)=1 y'(0)=-6 Solve using Laplace transforms. Then, solve using undetermined coefficients. Then, solve using...
y''+ 3y'+2y=e^t y(0)=1 y'(0)=-6 Solve using Laplace transforms. Then, solve using undetermined coefficients. Then, solve using variation of parameters.
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
Consider the following signal y(t)=e−5.3tu(t)∗e−8.1tu(t) Using the multiplication-convolution duality of the CTFT, y(t) can be expressed...
Consider the following signal y(t)=e−5.3tu(t)∗e−8.1tu(t) Using the multiplication-convolution duality of the CTFT, y(t) can be expressed in the frequency domain as: Y(jw)=1A+Bjw+Cw2. Find the values of A, B and C.
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Solve the following IVP specifically using the Laplace transform method (d^3)x/d(t^3)+x=e^(-t)u(t)    f(0)=0 f'(0)=0    f''(0)=0...
Solve the following IVP specifically using the Laplace transform method (d^3)x/d(t^3)+x=e^(-t)u(t)    f(0)=0 f'(0)=0    f''(0)=0 where u(t) is the Heaviside step function
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve the IVP using Laplace transforms x' + y'=e^t -x''+3x' +y =0 x(0)=0, x'(0)=1, y(0)=0
Solve y''-y'-2y=e^t using variation of parameters.
Solve y''-y'-2y=e^t using variation of parameters.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT