Question

In: Advanced Math

For the following Cauchy-Euler equation, find two solutions of the homogeneous equation and then use variation...

For the following Cauchy-Euler equation, find two solutions of the homogeneous equation and then use variation of parameters to find xp. Before solving for xp you need to divide the equation by t2 to have the correct forcing function f(t).

t2x'' − 2tx' + 2x = 8t

xp =__________________

Solutions

Expert Solution


Related Solutions

Use the substitution x = et to transform the given Cauchy-Euler equation to a differential equation...
Use the substitution x = et to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. (Use yp for dy/dt and ypp for d2y/dt2.) x2y'' − 3xy' + 13y = 2 + 3x
find the general solution of the equation using cauchy euler. show complete solution x^2 y" -...
find the general solution of the equation using cauchy euler. show complete solution x^2 y" - 3xy' + 3y = 2x^4 e^x
[2 marks] Suppose that the characteristic polynomial of the following Cauchy-Euler equation x2 y′′ + αx ...
[2 marks] Suppose that the characteristic polynomial of the following Cauchy-Euler equation x2 y′′ + αx y′ + β y  =  0 has roots m1  =  2 − 3i, and m2  =  2 + 3i. Find α and β. Enter the values of α and β (in that order) into the answer box below, separated with a comma.
Solve the Cauchy-Euler equation x4y'''' - 4x2y'' + 8xy' - 8y = 12xlnx x > 0
Solve the Cauchy-Euler equation x4y'''' - 4x2y'' + 8xy' - 8y = 12xlnx x > 0
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation. y''+2y'+5y=3sin(2t)
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation. y''+4y=3csc2t   
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation. y''+2y'+y=2e^t
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation. y''+2y'+y=2e^{-t}
t2 (d2r/dt2) - 9t (dr/dt) + 16r = 4 is an example of a "Cauchy-Euler equation."...
t2 (d2r/dt2) - 9t (dr/dt) + 16r = 4 is an example of a "Cauchy-Euler equation." Such equations appear in a number of physics and engineering applications. a) Write the complementary homogeneous equation. b) Plug r = ekt into the equation you wrote in part a. Show that this solution will not work for any constant k: this equation has no exponential solution. c) Plug the guess r = tn (where n is a constant) into the equation you wrote...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT