In: Advanced Math
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
y''+2y'+5y=3sin(2t)
Find general solution of the non-homogeneous equation.
y''+2y'+5y=3sin(2t)
First solve the homogeneous equation:
y''+2y'+5y=0
=> r^2+2r+5=0 => r_{1}=-1+2i , r_{2}=-1-2i
So therefore, the general solution of the homogeneous part is:
y(t)=C_{1}e^{-t}cos2t+C_{2}e^{-t}sin2t
Now we must solve for the non-homogencous part:
y(t)=Asin2t+Bcos2t, y'(t)=2Acos2t-2Bsin2t, y''(t)=-4Asin2t-4Bcos2t
Plug the above into the rom-homogeneous equation and solve.
y''+2y'+5y=3sin(2t)
=>-4Asin2t-4Bcos2t+2Acos2t-2Bsin2t+Asin2t+Bcos2t=3sin2t
(A-4B)sin2t+(B+4A)cos2t=3sin2t
=> A-4B=3, B+4A=0
=> A=3/17 and B= -12/17
So therefore the final solution is:
y(t)=C_{1}e^{-t}cos2t+C_{2}e^{-t}sin2t+3/17sin2t-12/17cos2t