In: Computer Science
Use Method of Undetermined Coefficients te find a particular solution of the non-homogeneous equation. Find general solution of the non-homogeneous equation.
y''+2y'+y=2e^{-t}
Find general solution of the non-homogeneous equation.
y''+2y'+y=2e^{-t}
First solve the homogeneous equation:
y''+2y'+y=0
r^2+2r+1=0 <=> (r+1)(r+1)=0
so r=-1 (repeated root)
So therefore, the general solution of the homogeneous part is:
y(t)+Ae^{-t}+Bt^{-t}
Now we must solve for the non-homogencous part:
y(t)=Ct^{2}e^{-t} , y'(t)=C(2te^{-t}-t^{2}e^{-t})
y''(t)=C(2e^{-t}-4te^{-t}+t^2e^{-t})
Plug the above into the rom-homogeneous equation and solve
y''+2y'+y=2e^{-t}
=> C(2e^{-t}-4te^{-t}+t^2e^{-t})+C(2te^{-t}-t^{2}e^{-t})+Ct^{2}e^{-t} =2e^{-t}
Then C=1
So therefore the final solution is:
y(t)+Ae^{-t}+Bt^{-t}+t^2e^{-t}