Question

In: Biology

Locus A has two alleles (A and a) while locus B has two alleles (B and...

Locus A has two alleles (A and a) while locus B has two alleles (B and b). The recombination frequency between locus A and locus B is 11%. A F1 heterozygote in trans configuration is mated with an aabb individual. What are the expected phenotypic percentages in the resulting progeny? Report your percentages to the tenths place and in the following format, replacing the "0.0" with your percentages.

Solutions

Expert Solution

Answer - Recombination frequency between locus A and locus B is 11%.

       Trans configuration is mated with an aabb individual.

F1                  A----------b      a--------b
                                          X
                       a----------B      a--------b

Gametes
          A--------b a----------B A--------B a-------b   X a------b

The recombination frequency is 11%. So A--------B and a-------b are recombinant.

Recombinant progeny = 11

Total progeny = 100

Therefore 11/100 = 0.11

Remaining are parent = 89. 89/2 = 44.5.

Parent A--------b = 44.5 = 44.5% or 0.445

Parent a----------B = 44.5 = 44.5% or 0.445

Recombinant offspring A--------B = 5.5% or 0.55

Recombinant offspring a-------b = 5.5% or 0.55

                


Related Solutions

Consider a locus with two alleles - B and b. B is dominant, while b is...
Consider a locus with two alleles - B and b. B is dominant, while b is recessive. There is no mutation. B has a selective advantage relative to b, so that the fitnesses of the three genotypes are BB = 1, Bb = 1, and bb = 1-s. In this case, s = 0.50, so that bb homozygotes have 50% fitness of heterozygotes and BB homozygotes. If the population has the following genotypic counts prior to selection of BB =...
Let A and B represent two variants (alleles) of the DNA at a certain genome locus...
Let A and B represent two variants (alleles) of the DNA at a certain genome locus (chromosome location). Assume that 40% of all the alleles in a certain population are type A and 30% are type B. The locus is said to be in Hardy-Weinberg equilibrium if the proportion of organisms that are of type AB is (0.40)(0.30) = 0.12 (in other words, alleles A and B are independent). In a sample of 300 organisms, 42 are of type AB....
You are studying a population of 100 lizards that has two alleles at a locus for...
You are studying a population of 100 lizards that has two alleles at a locus for skin color, blue (B) and green (G). There are 30 individuals with the BB genotype, 30 individuals with the BG genotype, and 40 individuals with the GG genotype. (a) What are the allele frequencies of B and G in the starting population? Show your calculations. (b) Is this population in Hardy-Weinberg equilibrium? Show your calculations.
2) If a gene locus for has two alleles and p is .33. What is q?...
2) If a gene locus for has two alleles and p is .33. What is q? 3) In a population of mice, coat color is controlled by a gene locus with two alleles, B and W. BB mice are brown, BW are tan and WW mice are white. What is this type of inheritance called? In this population there are 20 brown mice 15 tan mice and 30 white mice. Calculate p and q for this population where p =...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. I. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. II. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that...
You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. I. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. II. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two...
An autosomal locus has alleles A and a. The frequency of individuals with the autosomal recessive...
An autosomal locus has alleles A and a. The frequency of individuals with the autosomal recessive phenotype is given. Which statements are true? (pick all that are true) HWE= Hardy-Weinberg equilibrium 1. We can calculate q=Freq(a) even if we don't assume Hardy-Weinberg Equilibrium 2. Even if we don't assume HWE, we can calculate the genotype frequencies that we weren't given 3. If we assume HWE, we can calculate the genotype frequencies that we weren't given 4. If we assume HWE,...
Q1. You have considered single locus and two locus (di) hybrid crosses for loci with alleles...
Q1. You have considered single locus and two locus (di) hybrid crosses for loci with alleles that are completely dominant/recessive. Come up with a general rule for the proportion of offspring expected to have the phenotype of all the recessive traits associated with X autosomal loci when fully heterozygous parents are crossed. Now, use that logic and provide the expected proportion of offspring that show recessive phenotype for 4 loci and the dominant phenotype the 5th locus when two fully...
Gene A has two alleles, A1 and A2. Gene B has two alleles, B1 and B2....
Gene A has two alleles, A1 and A2. Gene B has two alleles, B1 and B2. In a population, the following haplotypes are observed. A1B1 = 0.2, A2B2 = 0.45, A1B2 = 0.15, and A2B1 = 0.2. Calculate the extent of linkage disequilibrium, D.
Create the genetic basis of a dog (e.g. a locus with two or more alleles) for...
Create the genetic basis of a dog (e.g. a locus with two or more alleles) for the phenotypic characteristic of the ear size Then create a brief scenario of how the evolutionary forces Genetic Drift, Gene Flow/Migration,Natural Selection)  might change the allele frequency and phenotype in the population For example the trait is tentacle length in octopi and TT octopi have long tentacles, tt octopi have short tentacles and Tt octopi have intermediate tentacles.  In the habitat in which these...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT