Question

In: Physics

A 160-V battery is connected across two parallel metal plates of area 28.5 cm^2 and separation...

A 160-V battery is connected across two parallel metal plates of area 28.5 cm^2 and separation 8.10 mm . A beam of alpha particles (charge +2e, mass 6.64×10^−27kg) is accelerated from rest through a potential difference of 1.60 kV and enters the region between the plates perpendicular to the electric field.

Part A: What magnitude of magnetic field is needed so that the alpha particles emerge undeflected from between the plates?

Part B: What direction of magnetic field is needed so that the alpha particles emerge undeflected from between the plates if the charges are moving to the right and the electric field points upward?

Solutions

Expert Solution


Related Solutions

A 150-V battery is connected across two parallel metal plates of area 28.5 cm^2 and separation 8.20 mm.
A 150-V battery is connected across two parallel metal plates of area 28.5 cm2 and separation 8.20 mm.A beam of alpha particles (charge +2e, mass 6.64*10-27kg) is accelerated from rest throguh a potential difference of 1.75 kV and enters the region between the plates perpendicular to the electric field.Whatmagnitude and direction of matnetic field are needed so that the alpha particles emerge undeflected from between the plates?
A 150-V battery is connected across two parallel metal plates of area 28.5 cm2 and a...
A 150-V battery is connected across two parallel metal plates of area 28.5 cm2 and a separation of 8.20 mm. A beam of alpha particles (charge +2e, mass 6.64E-27 kg) is accelerated from rest through a potential difference of 1.75 kV and enters the region between the plates perpendicular to the electric field. What magnitude and direction of magnetic field are needed so that the alpha particles emerge undeflected from between the plates?
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude...
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude but opposite sign. The plates are oriented horizontally. Assume the electric field between the plates is uniform, and it has a magnitude of 1,880 N/C. A charged particle with mass 2.00 ✕ 10−16 kg and charge 1.07 ✕ 10−6 C is projected from the center of the bottom negative plate with an initial speed of 1.08 ✕ 105 m/s at an angle of 37.0°...
A parallel-plate capacitor with plates of area 590 cm2 and is connected across the terminals of...
A parallel-plate capacitor with plates of area 590 cm2 and is connected across the terminals of a battery. After some time has passed, the capacitor is disconnected from the battery. When the plates are then moved 0.48 cm farther apart, the charge on each plate remains constant but the potential difference between the plates increases by 100 V. (a) What is the magnitude of the charge on each plate? (b) Do you expect the energy stored in the capacitor to...
A parallel-plate capacitor has plates of area 0.15 m2 and a separation of 1.00 cm. A...
A parallel-plate capacitor has plates of area 0.15 m2 and a separation of 1.00 cm. A battery charges the plates to a potential difference of 100 V and is then disconnected. A dielectric slab of thickness 4 mm and dielectric constant 4.8 is then placed symmetrically between the plates. (a) What is the capacitance before the slab is inserted? pF (b) What is the capacitance with the slab in place? pF (c) What is the free charge q before the...
A parallel-plate capacitor with plate separation of 1.0 cm has square plates, each with an area...
A parallel-plate capacitor with plate separation of 1.0 cm has square plates, each with an area of 6.0 × 10 -2 m 2. What is the capacitance of this capacitor if a dielectric material with a dielectric constant of 2.4 is placed between the plates, completely filling them? ( ε 0 = 8.85 × 10 -12 C 2/N ∙ m 2) A)1.3 × 10-12 F B)1.3 × 10-10 F C)64 × 10-14 F D)15 × 10-12 F E)15 × 10-14...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. With the capacitor connected to the battery, decreasing d increases U. A: True B: False After being disconnected from the battery, inserting a dielectric with...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. True or False With the capacitor connected to the battery, increasing d decreases Q. True or False  After being disconnected from the battery, inserting a dielectric...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. With the capacitor connected to the battery, inserting a dielectric with κ will increase C. 2. With the capacitor connected to the battery, decreasing...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. After being disconnected from the battery, inserting a dielectric with κ will increase C. With the capacitor connected to the battery, inserting a dielectric with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT