In: Statistics and Probability
Suppose the population variance is unknown and the sample
standard deviation is 1.9. Compute the correct quantile for each
confidence interval: (Use 3 decimal places)
(a) A 95% confidence interval from a sample of size 18.
(c) A 80% confidence interval from a sample of size 3.
a)
| here n = | 18 | ||
| s2= | 3.610 | ||
| Critical value of chi square distribution for n-1=17 df and 95 % CI | |||
| Lower critical value χ2L= | 7.564 | ||
| Upper critical valueχ2U= | 30.191 | ||
| for Confidence interval of standard deviation: | |||
| Lower bound =√((n-1)s2/χ2U)=sqrt((18-1)*(3.61/30.191))= | 1.426 | ||
| Upper bound =√((n-1)s2/χ2L)=sqrt((18-1)*(3.61/7.564))= | 2.848 | ||
| from above 95% confidence interval for population standard deviation =(1.426<σ<2.848) | |||
c)
| Critical value of chi square distribution for n-1=2 df and 80 % CI | |||
| Lower critical value χ2L= | 0.211 | ||
| Upper critical valueχ2U= | 4.605 | ||
| for Confidence interval of standard deviation: | ||
| Lower bound =√((n-1)s2/χ2U)= | 1.252 | |
| Upper bound =√((n-1)s2/χ2L)= | 5.850 | |
| 80% confidence interval for population standard deviation =(1.252<σ<5.85) | ||