In: Statistics and Probability
Suppose the population variance is unknown and the sample
standard deviation is 1.92. Compute the correct quantile for each
confidence interval: (Use 3 decimal places)
(a) A 95% confidence interval from a sample of size 10.
(c) A 80% confidence interval from a sample of size 6.
Solution :
Given that,
(a)
s = 1.92
Point estimate = s2 = 3.6864
2R = 2/2,df = 19.023
2L = 21 - /2,df = 2.700
The 95% confidence interval for 2 is,
(n - 1)s2 / 2/2 < 2 < (n - 1)s2 / 21 - /2
(9) (3.6864) / 19.023 < 2 < (9) (3.6864) / 2.700
1.744 < 2 < 12.286
(1.744 , 12.286)
(c)
s = 1.92
Point estimate = s2 = 3.6864
2R = 2/2,df = 9.236
2L = 21 - /2,df = 1.610
The 80% confidence interval for 2 is,
(n - 1)s2 / 2/2 < 2 < (n - 1)s2 / 21 - /2
(5) (3.6864) / 9.236 < 2 < (5) (3.6864) / 1.610
1.996 < 2 < 11.446
(1.996 , 11.446 )