Question

In: Statistics and Probability

Given μX = 8.3, σX = 3.2 a) Find Z1 such that prob(.35 < Z <...

Given μX = 8.3, σX = 3.2

a) Find Z1 such that prob(.35 < Z < Z1) = .3231

b) Find prob(-1.2 < Z < 2.7)

c) Find prob(Z = .83)

d) Find any Z0 and Z1 such that prob(Z0 < Z < Z1) = .4444

Solutions

Expert Solution

a)

P (    0.350   < Z <    1.750   )                   
= P ( Z <    1.750   ) - P ( Z <   0.350   ) =    0.9599   -    0.6368   =    0.3231

Z1 = 1.75

b)

µ =    8.3                              
σ =    3.2  

                           
P (    -1.200   < Z <    2.700   )                   
= P ( Z <    2.700   ) - P ( Z <   -1.200   ) =    0.9965   -    0.1151   =    0.8815

............

C)

so, X=zσ+µ=   0.83   *   3.2   +   8.3  
X   =   10.96   (answer)          

d)

µ =    8.3                      
σ =    3.2                      
proportion=   0.4444                      
proportion left    0.5556   is equally distributed both left and right side of normal curve                   
z value at   0.2778   = ±   0.589   (excel formula =NORMSINV(   0.56   / 2 ) )  
                          
z0 = -0.589

z1 = 0.589

THANKS

revert back for doubt

please upvote




Related Solutions

3. Given μX = 8.3, σX = 3.2 a) Find prob(X < 10.0) b) Find prob(X...
3. Given μX = 8.3, σX = 3.2 a) Find prob(X < 10.0) b) Find prob(X > 3.2) c) Find X0 such that prob(X > X0) = .9573 d) Find prob(6.0 < X < 7.0) e) Find the two X's that are the boundaries of the middle 68% of the distribution
Given μX = 8.3, σX = 3.2 c) Find the 32nd percentile of Z d) Find...
Given μX = 8.3, σX = 3.2 c) Find the 32nd percentile of Z d) Find the prob(Z < -.88 OR Z > 1.88) e) Find Z0 such that prob(Z > Z0) = .9608
X values and probabilities 1. Given μX = 750, σX = 100         a) find the...
X values and probabilities 1. Given μX = 750, σX = 100         a) find the p(X < 970)         b) find the p(X > 724)         c) find the p(617 < X < 980)         d) find X0 if p(X > X0) = .50         e) find X0 if p(X < X0) = .0643         f) find X0 if p(X > X0) = .4129         g) find the 23rd percentile of X         h) find the two X values...
Z table work with given standard deviation and average(mean) 1.   Given μX = 750, σX =...
Z table work with given standard deviation and average(mean) 1.   Given μX = 750, σX = 80         a) Find the two X values that are 2.7 SD away from the mean         b) Find X1 if p(720 < X < X1) = .428         c) Find X0 if p(X0 < X < 910) = .347         d) Find p((X < 700) or (X > 900)) (sum required)         e) Find any X0 and X1 s.t. p(X0 < X <...
A test is given and the average (μX) score was 190, with a SD (σX) of...
A test is given and the average (μX) score was 190, with a SD (σX) of 50. Assuming a normal distribution for the grades, find the dividing line (test scores) between the A's, B's, C's, D's, and E's. The bottom 13% will be assigned the E's, the next 13% will be the D's, 50% will be the C's, the next 15% the B's and the top 9% will be the A's.
Find the probability for Z>-0.97 given that Z is Standard Normal Distribution?
Find the probability for Z>-0.97 given that Z is Standard Normal Distribution?
Find the probability for Z<1.14 given that Z is Standard Normal Distribution?
Find the probability for Z<1.14 given that Z is Standard Normal Distribution?
Given that z is a standard normal random variable, find z for each situation.
  Given that z is a standard normal random variable, find z for each situation. (Round your answers to two decimal places.) (a) The area to the left of z is 0.2119. (b) The area between −z and z is 0.9398. (c) The area between −z and z is 0.2052. (d) The area to the left of z is 0.9949. (e) The area to the right of z is 0.5793.
A) Find the z-score corresponding to the given area. Remember, z is distributed as the standard...
A) Find the z-score corresponding to the given area. Remember, z is distributed as the standard normal distribution with mean of μ = 0 and standard deviation σ = 1. Round to two decimals, if necessary. The area to the left of z is 10%. z = The area to the right of z is 50%. z = The area to the left of z is 55%. z = The area to the right of z is 5%. z =...
Find the z-score such that 35% of all observations (from a standard Normal distribution) are greater...
Find the z-score such that 35% of all observations (from a standard Normal distribution) are greater than z
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT