In: Statistics and Probability
MULTIPLE REGRESSION
The date set below was collected from a random sample of 15 households on the following variables: (1) Weekly Income, (2) House Rent, (3) Food Expense, (4) Entertainment Expense, and (5) Weekly Savings.
Sampled    Weekly   House  
    Food      
Entertain/   Weekly
Individual   Income   Rent  
    Expense   Expense  
Savings
Case 1   $250      
85       95      
25       20
Case 2   $190      
75       90      
10       0
Case 3   $420      
140       120  
    40       50
Case 4   $340      
120       130  
    0       40
Case 5   $280      
110       100  
    30       15
Case 6   $310      
80       125  
    25       25
Case 7   $520      
150       140  
    55       80
Case 8   $440      
175       155  
    45       0
Case 9   $360      
90       85      
20       95
Case 10   $385      
105       135  
    35       30
Case 11   $205      
80       105  
    0       5
Case 12   $265      
65       95      
15       15
Case 13   $195      
50       80      
10       20
Case 14   $250      
90       100  
    25       0
Case 15   $480      
140       160  
    45       45
A multiple regression was run with WEEKLY SAVINGS as the DEPENDENT VARIABLE and the rest as the INDEPENDENT VARIABLES.
SAVINGS = b + b INCOME + b RENT + b FOOD + b ENTERT
The resulting computer output is on the next page.
COMPUTER OUTPUT PART I
WEEKLY SAVINGS
REGRESSION FUNCTION & ANOVA FOR SAVINGS
SAVINGS = 23.14156 + 0.591446 INCOME - 0.341793 RENT
- 1.119734 FOOD - 0.907868 ENTERT
R-Squared         = 0.917562
Adjusted R-Squared     = 0.870454
Standard error of estimate    = 10.9635
Number of cases used    = 12
Analysis of Variance
          
           
           
p-value
Source SS     df MS     F Value Sig
Prob
Regression 9364.86    4    2341.21   
19.47795 0.000677
Residual 841.39 7     120.198
Total 10206.250 11
COMPUTER OUTPUT PART II
WEEKLY SAVINGS
REGRESSION COEFFICIENTS FOR SAVINGS
           
Two-Sided   p-value
Variable         Coefficient Std
Error     t Value    Sig Prob
Constant    23.14156    18.34071
    1.26176    0.247451
INCOME    0.59145     0.07388
    8.00526    0.000091
RENT    -0.34179     0.19849   
-1.72199    0.128743 *
FOOD       -1.11973    
0.24633    -4.54565    0.002650
ENTERT      -0.90787     0.32460
   -2.79689    0.026643
* indicates that the variable is marked for leaving
Standard error of estimate = 10.9635
Durbin-Watson statistic = 1.683103
Use the above computer output to respond to the following
questions:
The Model was:
(a)   The multiple regression model is:
ANSWER
(b)   What is the estimated multiple regression?
ANSWER
(c)   What are the estimated values of b , b , b , b ,
and b ?
ANSWERS   b = ?
       b = ?
       b = ?
       b = ?
       b = ?
(d)   What relationship exists between (i) SAVINGS and
INCOME?, SAVINGS and RENT?, SAVINGS and FOOD expense, SAVINGS and
ENTERTAINMENT expense?
ANSWERS
(e) Which of the four independent (explaining) variables are (is) significant in the multiple regression and which ones are (is) not significant and why? (Use α = 0.05 level of significance). Use α = 0.05 level ANSWERS
The statistically significant explaining variables are (Use α = 0.05 level):
Those that are not significant (Use α = 0.05 level):
(f)   Are the results in line with Maslow’s hierarchy of
needs? Explain.
Solution:
Part(a): Multiple regression model is,

here, Y is independent variable, 
is intercept ,
 are slopes and x1,x2,x3 and x4 are independant variable.
Part(b): Estimated multiple regression model is,
Y=23.14156+0.5914 Income -0.3417 Rent -1.1197 Food -0.90787 Expense
Part (c): following are values estimated for intercept and slopes:
alpha (intercept)=23.14156
b1=0.5914
b2=-0.3417
b3=-1.1197
b4=-0.90787
Part(d): Weekly savings has significant linear relationship with variables weekly income, food and entertainment expenses.
Weekly savings has not linear relationship with rent.
Part (e): Weekly income, food and entertainment expenses there independent variables comes out be significant because p-values associated with these variables are less than 0.05 (significance level) therefore, we reject the null hypothesis that slope=0.
Independent variable rent is not significant because its p-value greater than level of significance alpha.