Question

In: Physics

A pickup truck with mass 2150 kg is traveling with a speed of 26.6 m/s, while...

A pickup truck with mass 2150 kg is traveling with a speed of 26.6 m/s, while a compact car of mass 1121 kg is traveling in the opposite direction with the same speed. The truck and car undergo a head-on collision and thereafter move together as a single body. What is the change in kinetic energy (AK) of the system consisting of both vehicles?
Help me please

Solutions

Expert Solution

m1 = mass of truck = 2150 kg

m2 = mass of car = 1121 kg

v1i = initial velocity of truck = 26.6 m/s

The car is moving at the same speed in opposite direction

so, v2i = initial velocity of car = -26.6 m/s

After the collision, both vehicles move together as a single body.

Let final final velocity of both cars be vf

No external force is acting on the system of car and truck in horizontal direction.

So, momentum of system is conserved

  

  

  

Kinetic enery of system reduced by 1,042,691.07 J

  


Related Solutions

A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes...
A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes into a smaller, 1100 kg parked wagon 'B'. The two vehicles remain joined together after the collision. What is the velocity of the wreck immediately after the collision? Neglect friction against the road. fAns: 14.6 m/s]
A pickup truck with mass 2so kgs traveling weha speed of 26m whileacompact car of mass...
A pickup truck with mass 2so kgs traveling weha speed of 26m whileacompact car of mass 2n kg is traveling in the opposite dinection weh the same speed The mack and car undergo a head on collesion and theseafher moue togesher as a single body What is the change in kinetic energy (A) of the sysem consasting of bech vehicles
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
A sticky ball of mass 0.0450 kg, traveling with a speed of 22.0 m/s in a...
A sticky ball of mass 0.0450 kg, traveling with a speed of 22.0 m/s in a direction 30.00 below the +x axis collides with another moving ball, of mass 0.0119 kg, traveling in a direction 44.70 above the +x axis. The two balls stick together and keep moving horizontally. The initial speed of the second ball is: a) 59.1 m/s b) 18.9 m/s c) 75.7 m/s d) 30.2 m/s e) 42.6 m/s
6.   A   10.0-kg   mass   is   traveling   to   the   right   with   a   speed   of   2.00   m/s   on&nbs
6.   A   10.0-kg   mass   is   traveling   to   the   right   with   a   speed   of   2.00   m/s   on   a   frictionless   horizontal   surface   when   it   collides   with   and   sticks   to   a   second   10.0-kg   mass   that   is   initially   at   rest   but   is   attached   to   a   light   spring   that   is   neither   stretched   nor   compressed   with   a   force   constant   80.0   N/m.   The   system   undergoes   SHM.   A)   Find   the   frequency,   amplitude,   the   period   of   the   subsequent   oscillations   and   the   phase   angle.   B)   Find   the   maximum   and   minimum  ...
A car with mass 1190kg is traveling to the east at 14m/s, while a truck with...
A car with mass 1190kg is traveling to the east at 14m/s, while a truck with mass 7700kg is traveling to the west at 25m/s. They both collide head-on, becoming entangled. (a)Find the total momentum of the system before the collision(b)Find the final speed of both objects after the collision.(c)Find the change in the velocity of each object. (d)Find the total momentum of the system after collision(e)Find the change in the kinetic energy of the system consisting of both cars.
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck...
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck that is traveling north. The two vehicles stick together as a result of the collision. After the collision, the wreckage is sliding at vf = 19 m/s in the direction θ = 25° east of north. Calculate the speed of each vehicle before the collision. The collision occurs during a heavy rainstorm so you can ignore friction forces between the vehicles and the wet...
Two vehicles are approaching an intersection. One is a 2300 kg pickup traveling at 13.0 m/s...
Two vehicles are approaching an intersection. One is a 2300 kg pickup traveling at 13.0 m/s from east to west (the ?x- direction), and the other is a 1300 kg sedan going from south to north (the +y?direction at 21.0 m/s ). Q1: Find the x -component of the net momentum of this system. Q2: Find the y-component of the net momentum of this system. Q3: What is the magnitude of the net momentum? Q4: What is the direction of...
A cameraman on a pickup truck is traveling westward at 23 km/h while he videotapes a...
A cameraman on a pickup truck is traveling westward at 23 km/h while he videotapes a cheetah that is moving westward 23 km/h faster than the truck. Suddenly, the cheetah stops, turns, and then run at 48 km/h eastward, as measured by a suddenly nervous crew member who stands alongside the cheetah's path. The change in the animal's velocity takes 2.2 s. What are the (a) magnitude and (b) direction of the animal’s acceleration according to the cameraman and the...
A cameraman on a pickup truck is traveling westward at 16 km/h while he videotapes a...
A cameraman on a pickup truck is traveling westward at 16 km/h while he videotapes a cheetah that is moving westward 31 km/h faster than the truck. Suddenly, the cheetah stops, turns, and then run at 50 km/h eastward, as measured by a suddenly nervous crew member who stands alongside the cheetah's path. The change in the animal's velocity takes 1.7 s. What are the (a) magnitude and (b) direction of the animal
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT