Question

In: Physics

Two vehicles are approaching an intersection. One is a 2300 kg pickup traveling at 13.0 m/s...

Two vehicles are approaching an intersection. One is a 2300 kg pickup traveling at 13.0 m/s from east to west (the ?x- direction), and the other is a 1300 kg sedan going from south to north (the +y?direction at 21.0 m/s ).

Q1: Find the x -component of the net momentum of this system.

Q2: Find the y-component of the net momentum of this system.

Q3: What is the magnitude of the net momentum?

Q4: What is the direction of the net momentum?

Solutions

Expert Solution

We know that momentum is given by

---------------------------- Solution of part 1 -------------------------------

Find the x -component of the net momentum of this system

So X -component of net momentum of system is - 29900i

---------------------------- Solution of part 2 -------------------------------

Find the y -component of the net momentum of this system

So Y -component of net momentum of system is 27300j

---------------------------- Solution of part 3 -------------------------------

Find the magnitude of the net momentum of this system

------------------------ Solution of part 4 ------------------------------

direction of the net momentum

or direction of met momentum is 47.60 degree West to the North

as shown in rough fig.below.


Related Solutions

A pickup truck with mass 2150 kg is traveling with a speed of 26.6 m/s, while...
A pickup truck with mass 2150 kg is traveling with a speed of 26.6 m/s, while a compact car of mass 1121 kg is traveling in the opposite direction with the same speed. The truck and car undergo a head-on collision and thereafter move together as a single body. What is the change in kinetic energy (AK) of the system consisting of both vehicles? Help me please
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the...
A 1,4-kg object traveling at 5,5 m/s collides head-on with a 3-kg object traveling in the opposite direction at 3,9 m/s. If the collision is perfectly elastic, what is the final speed of the 1,4-kg object? Answer in two decimal places. The answer is supposed to be 7,32. Why is that?
Two cars approach an ice-covered intersection. One car, of mass 1.22 103 kg, is initially traveling...
Two cars approach an ice-covered intersection. One car, of mass 1.22 103 kg, is initially traveling north at 10.6 m/s. The other car, of mass 1.66 103 kg, is initially traveling east at 10.6 m/s. The cars reach the intersection at the same instant, collide, and move off coupled together. Find the velocity of the center of mass of the two-car system just after the collision. magnitude direction_______ north of east
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.o m/s. The cars stick together. Assume that any otherunbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what directions does the wreckage move just after the collision? (c) What is the total Kinetick Energy before the collision? (d) What is the total Kinetic Energy after?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what direction does the wreckage move just after the collision? (c) What is the total Kinetic Energy before the collision? (d) What is the total Kinetic Energy after?
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck...
As shown below, a 840 kg car traveling east collides with a 1730 kg pickup truck that is traveling north. The two vehicles stick together as a result of the collision. After the collision, the wreckage is sliding at vf = 19 m/s in the direction θ = 25° east of north. Calculate the speed of each vehicle before the collision. The collision occurs during a heavy rainstorm so you can ignore friction forces between the vehicles and the wet...
A car with a mass of 980 kg is initially traveling east toward an intersection with...
A car with a mass of 980 kg is initially traveling east toward an intersection with a speed of vc = 19.6 m/s and a 1500 kg pickup is traveling north toward the same intersection. The car and truck collide at the intersection and stick together. After the collision, the wreckage (car and truck) moves off in a direction of 35.0° above the x-axis. Determine the initial speed of the truck and the final speed of the wreckage. a.   initial...
A car with a mass of 980 kg is initially traveling east toward an intersection with...
A car with a mass of 980 kg is initially traveling east toward an intersection with a speed of vc = 18.8 m/s and a 1500 kg pickup is traveling north toward the same intersection. The car and truck collide at the intersection and stick together. After the collision, the wreckage (car and truck) moves off in a direction of 45.0° above the x-axis. Determine the initial speed of the truck and the final speed of the wreckage. initial speed...
Two manned satellites approaching one another at a relative speed of 0.400 m/s intend to dock....
Two manned satellites approaching one another at a relative speed of 0.400 m/s intend to dock. The first has a mass of 2.00 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. Assume that the positive direction is directed from the second satellite towards the first satellite. (a) Calculate the final velocity after docking, in the frame of reference in which the first satellite was originally at rest. m/s (b) What is the loss of kinetic...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT