Question

In: Economics

Suppose you draw a sample from a population with a standard deviation of 25. You draw...

Suppose you draw a sample from a population with a standard deviation of 25. You draw 50 observations and end up with a sample mean of 100.
a) Estimate a 90% confidence interval for the population mean
b) Estimate a 95% confidence interval for the population mean
c) Estimate a 99% confidence interval for the population mean
d) What effect does increasing the confidence level have on the resulting confidence interval?
e) Carefully interpret your confidence interval from part (a).

Solutions

Expert Solution


Related Solutions

Suppose a random sample of 25 is drawn from a population whose standard deviation is unknown....
Suppose a random sample of 25 is drawn from a population whose standard deviation is unknown. If the sample mean is 125 and the sample standard deviation is 10, the 90% confidence interval to estimate the population mean is between
We draw a random sample of size 36 from a population with standard deviation 3.2. If...
We draw a random sample of size 36 from a population with standard deviation 3.2. If the sample mean is 27, what is a 95% confidence interval for the population mean? [26.7550, 28.2450] [25.9547, 28.0453] [25.8567, 28.1433] [26.8401, 27.1599]
We draw a random sample of size 36 from a population with standard deviation 3.2. If...
We draw a random sample of size 36 from a population with standard deviation 3.2. If the sample mean is 27, what is a 95% confidence interval for the population mean?
A random sample of 25 items is drawn from a population whose standard deviation is unknown....
A random sample of 25 items is drawn from a population whose standard deviation is unknown. The sample mean (x-bar) is 850. Construct a confidence interval with 95% confidence for the different values of s. Do not forget to use the t distribution in this case. a. Assume s = 15. b. Assume s = 30. c. Assume s = 60. d. Describe how the confidence interval changes as s increases.
4 We draw a random sample of size 40 from a population with standard deviation 2.5....
4 We draw a random sample of size 40 from a population with standard deviation 2.5. Show work in excel with formulas a If the sample mean is 27, what is a 95% confidence interval for the population mean? b If the sample mean is 27, what is a 99% confidence interval for the population mean? c If the sample mean is 27, what is a 90% confidence interval for the population mean? d If the sample mean is 27...
A population has a mean of 400 and a standard deviation of 70. Suppose a sample...
A population has a mean of 400 and a standard deviation of 70. Suppose a sample of size 125 is selected. Use z-table. a. What is the probability that the sample mean will be within +4 or -4 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +10 0r -10 of the population mean (to 4 decimals)?
A population has a mean of 400 and a standard deviation of 60. Suppose a sample...
A population has a mean of 400 and a standard deviation of 60. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT