Question

In: Advanced Math

A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is...

A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of 15cos(3t)−10sin(3t) N,determine the steady-state response in the form Rcos(ωt−δ)

Solutions

Expert Solution


Related Solutions

A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of 9cos(3t)−6sin(3t) N,determine the steady-state response in the form Rcos(ωt−δ).
spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached...
spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of 15cos(3t)−10sin(3t) N,determine the steady-state response in the form Rcos(ωt−δ). R= _________ ω=__________ δ=___________
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resis- tance numerically equal to the magnitude of the instanta- neous velocity. If the system is driven by an external force of (12 cos 3t − 8 sin 3t) N, determine the steady-state response. (a) Find the gain function if the external force is f(t) = cos(ωt). (b)...
A spring with a mass of 2 kg has a damping constant 14 kg/s. A force...
A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched 0.3 m beyond its natural length. The spring is stretched 0.7 m beyond its natural length and then released. Find the position of the mass at any time t. (Assume that movement to the right is the positive x-direction and the spring is attached to a wall at the left end.) What is x(t)?
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
A spring with 2 kg mass has damping constant 14 and a force of 6 Newton...
A spring with 2 kg mass has damping constant 14 and a force of 6 Newton is required to keep the spring stretched 0.5 meter beyond its natural length. The spring is stretched 1 meter beyond its natural length and then is released with zero initial velocity. If an external force of F(t)= 2sin2t is applied to the system, find the position of the mass at any time t.
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m...
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m and allowed to come to rest. it is then set in motion by giving it an initial velocity of 150 cm/sec. Find an expression for the motion of the mass, assuming no air resistance.
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
undamped spring-mass system with mass 6 kg and a spring which is stretched 2 meter by...
undamped spring-mass system with mass 6 kg and a spring which is stretched 2 meter by 10 Newtons. Suppose an oscillating force 3 cos(ωt) is acting on the system. What value of ω causes resonance? For this value of ω, find a formula for x, the distance between the weight and equilibrium t seconds after the weight starts at x = 0 at rest.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT