Question

In: Math

A spring with a mass of 2 kg has a damping constant 14 kg/s. A force...

A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched 0.3 m beyond its natural length. The spring is stretched 0.7 m beyond its natural length and then released. Find the position of the mass at any time t. (Assume that movement to the right is the positive x-direction and the spring is attached to a wall at the left end.) What is x(t)?

Solutions

Expert Solution


Related Solutions

A spring with 2 kg mass has damping constant 14 and a force of 6 Newton...
A spring with 2 kg mass has damping constant 14 and a force of 6 Newton is required to keep the spring stretched 0.5 meter beyond its natural length. The spring is stretched 1 meter beyond its natural length and then is released with zero initial velocity. If an external force of F(t)= 2sin2t is applied to the system, find the position of the mass at any time t.
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring...
A spring with a mass of 1 kg has damping constant 10 kg/s and a spring constant 41 kg/s2 . If the spring begins at equilibrium position and is given a velocity of 2 m/s, find the position of the mass at any time t. Is this overdamping, critical damping or underdamping?
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of 9cos(3t)−6sin(3t) N,determine the steady-state response in the form Rcos(ωt−δ).
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is...
A spring-mass system has a spring constant of 3 Nm. A mass of 2 kg is attached to the spring, and the motion takes place in a viscous fluid that offers a resistance numerically equal to the magnitude of the instantaneous velocity. If the system is driven by an external force of 15cos(3t)−10sin(3t) N,determine the steady-state response in the form Rcos(ωt−δ)
A spring with a 6-kg mass and a damping constant 5 can be stretched 1.5 meters...
A spring with a 6-kg mass and a damping constant 5 can be stretched 1.5 meters beyond its natural length and held at rest there by a force of 7.5 newtons. Suppose the spring is stretched 3 meters below spring-mass equilibrium and then released with zero velocity. Find the position of the mass after t seconds. y(t)=? Please show all the work.
A spring with a 4-kg mass and a damping constant 3 can be held stretched 1...
A spring with a 4-kg mass and a damping constant 3 can be held stretched 1 meters beyond its natural length by a force of 4 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released with zero velocity, In the notation of the text, what is the value ?2−4??c2−4mk?  m2kg2/sec2m2kg2/sec2 Find the position of the mass, in meters, after t seconds. Your answer should be a function of the variable t with the general form...
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
A particle of mass 4.00 kg is attached to a spring with a force constant of...
A particle of mass 4.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 5.00 m. A 9.00 kg object is dropped vertically on top of the 4.00 kg object as it passes through its equilibrium point. The two objects stick together. a) By how much does the amplitude of the vibrating system change as a result of collision? b) By how much does...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant...
(10pts) Consider the damped forced harmonic oscillator with mass 1 kg, damping coefficient 2, spring constant 3, and external force in the form of an instantaneous hammer strike (Section 6.4) at time t = 4 seconds. The mass is initially displaced 2 meters in the positive direction and an initial velocity of 1 m/s is applied. Model this situation with an initial value problem and solve it using the method of Laplace transforms.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT