Question

In: Physics

A 14 mm high object is 11 cm from a concave mirror with focal length 16...

A 14 mm high object is 11 cm from a concave mirror with focal length 16 cm. Calculate (a) the location of the image, (b) the height of the image, and (c) the type of image.

Solutions

Expert Solution

(a) Focal length = f = - 16 cm ( concave mirror has negative focal length )

Object distance =u = - 11 cm, Image distance = v = ?

We know, ( 1 / f ) = ( 1 / v ) - ( 1 / u )

1 / v = 1 / f + 1 / u

v = uf / ( u + f ) = ( -11 ) x ( - 16 ) / ( - 11 - 16 )

v = - 6.52 cm

Hence, the image will be formed at a distance of 6.52 cm in front of the lens.

(b) Magnification = m = v / u = Image height / Object height

m = ( - 6.52 ) / ( - 11 ) = Image height / 14 mm

5.93 = Image height / 14 mm

Image height = 5.93 x 14 mm ~ 83 mm

Hence, height of the image is : 83 mm.

(c) Since, image distance is negative, the image is VIRTUAL.

Since, magnification is positive, the image is UPRIGHT.


Related Solutions

A concave mirror has a focal length of 43.8 cm. The distance between an object and...
A concave mirror has a focal length of 43.8 cm. The distance between an object and its image is 76.6 cm. Find (a) the object and (b) image distances, assuming that the object lies beyond the center of curvature and (c) the object and (d) image distances, assuming that the object lies between the focal point and the mirror.
1. If a concave mirror has a focal length of 20 cm, at which object distance...
1. If a concave mirror has a focal length of 20 cm, at which object distance will an image larger than objects be formed on screen? a.) 40 cm b.) 30 cm c.) none of the choices d.) 14 cm e.) 50 cm 2. An electron and proton are projected with the same velocity when a uniform magnetic field perpendicular to the velocity of the two charges is applied. The electron follows a circular path of radius 1 mm. What...
An object 2.87 cm high is placed 19.9 cm from a convex mirror with a focal...
An object 2.87 cm high is placed 19.9 cm from a convex mirror with a focal length of 7.70 cm. (a) Find the position of the image. Your response differs from the correct answer by more than 100%. cm (b) Find the magnification of the mirror. (c) Find the height of the image. Your response differs from the correct answer by more than 100%. cm Suppose the object is moved so it is 3.85 cm from the same mirror. Repeat...
A concave mirror has a focal length of 63.6 cm. (a) What is its radius of...
A concave mirror has a focal length of 63.6 cm. (a) What is its radius of curvature? __________ cm (b) Locate the image when the object distance is 100 cm. (Indicate the side of the mirror with the sign of your answer.) ____________ cm Describe the properties of the image when the object distance is 100 cm. (Select all that apply.) A) real B) virtual C) upright D) inverted (c) Locate the image when the object distance is 10.0 cm....
​A concave cosmetic mirror has a focal length of 24 cm . A 3.0-cm-long mascara brush is held upright 12 cm from the mirror.
A concave cosmetic mirror has a focal length of 24 cm . A 3.0-cm-long mascara brush is held upright 12 cm from the mirror.Part AUse ray tracing to determine the location of its image.Part BWhat is the height of the image? Use ray tracing to determine.
An object is placed 31.5 cm from a +5.0-D lens. A spherical mirror with focal length...
An object is placed 31.5 cm from a +5.0-D lens. A spherical mirror with focal length 25 cm is placed 75 cm behind the lens. Note that the mirror reflects light back through the lens. Find the distance from original object to the final image, measured from the object toward the lens. Enter negative value if the object is between the image and the mirror and positive value otherwise.
a) A 4.0 cm -tall object is 15 cm in front of a CONVEX mirror that has a -25 cm focal length.
  1. Please complete the following parts of the question regarding optics. a) A 4.0 cm -tall object is 15 cm in front of a CONVEX mirror that has a -25 cm focal length. Calculate the image position then Calculate the image height. Type a positive value if the image is upright and a negative value if it is inverted. b) A 3.0-cm-tall object is 17 cm in front of a CONVERGING lens that has a 32 cm focal length....
an optical system consists of an optical lens and a concave mirror, the focal length of...
an optical system consists of an optical lens and a concave mirror, the focal length of length is f=20​cm, the distance between objective and lens is 30, the distance between lens and concave mirro is alos 30cm, the radius of concave mirror is 30cm. ​(a) find the location of the final image ​(b)is this a real or virtual image? ​(c)is this an erect or inverted image? ​(d)what is the overall transversal magnification?
A 2.20 cm high insect is 1.15 m from a 130 mm focal-length lens. What is...
A 2.20 cm high insect is 1.15 m from a 130 mm focal-length lens. What is the image distance? mm How high is the image? cm What type is it? (Select all that apply.) The image is behind the lens. The image is virtual The image is inverted. The image is real. The image is upright. The image is in front of the lens.
a real image 9cm from mirror is formed when object is 14 cm away from mirror....
a real image 9cm from mirror is formed when object is 14 cm away from mirror. if object is 20cm away, where is the image?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT