Question

In: Math

Given x= -2 ,y=-3 , z=5

Given x= -2 ,y=-3 , z=5

Find :-

a) 3x-3y

b) -2(y-z)

c) -(-2+z)-(-3/2 x²)

 

Solutions

Expert Solution

Given x= -2 

           y=-3

           z=5 

a) 3x-3y , Putting the value of x and y in the expression

   =  3(-2)-3(-3)

   = 3

b) -2(y-z) , Putting the value of y and z 

    = -2(-3-5)

    = 16

c) -(-2y+z)-(3/2 x²) , Putting the value of x ,y and z 

    = -(-2(-3)+5)-(3/2 (-2)²)

    = -5

Hence , the values are 3 , 16 and -5.


The Required solutions are :-

a) 3

b) 16

c) -5

 

Related Solutions

Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x,...
Given the two lines (x, y, z) = (4, -3, 5) + t(2, 0, -3) (x, y, z) = (4, -3, 5) + s(5, 1, -1) a) determine a vector equation for the plane that combines the two lines b) parametric equations of the plane that contains the two lines c) Cartesian equation of the plane that contains the two lines
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z)...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two constraints x+y+z=6 and x-2*y+z=0. find the extreme value of f(x,y,z) and determine whether it is maximum of minimum.
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2...
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2 1B) Use the Divergence Theorem to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^(-x^2-y^2/4-z^2/9) , where T is measured in degrees Celsius and x,y, and z in meters. just try to keep track of what needs to be a unit vector. a) Find the rate of change of the temperature at the point (1, 1, -1) in the direction toward the point (-5, -4, -3). b) In which direction (unit vector) does the temperature increase the fastest at (1, 1, -1)? c) What is...
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Given the surface x= (3 (y-1)^2)+ (2 (z+ 3)^2)+ 7. Find an equation of the tangent...
Given the surface x= (3 (y-1)^2)+ (2 (z+ 3)^2)+ 7. Find an equation of the tangent plane at the point(12,2,2) in four ways: a) By using the surface as given,x=h(y,z) b) By writing the surface as z=f(x,y)(only keep the square root whose sign corresponds to the point(12,2,2)). c) By writing the surface as y=g(x,z)(only keep the square root whose sign corresponds to the point(12,2,2)).
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z):...
*(1)(a) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=c}. (b) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): x=a}. (c) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): y=b}. *(2) Find a formula for the intersection of a cone {(x,y,z): x^2+y^2=z^2} with a plane {(x,y,z): z=kx+b} assuming both b and k are positive. (a) For what value of...
if x is 2/3 of y and y is 3/4 of z, what is the value of z:x
if x is 2/3 of y and y is 3/4 of z, what is the value of z:x
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT