Question

In: Physics

Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle...

Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle B of mass 2m. After collision, VA(final)=10i+5j (m/s). a) Find VB(final) if the system (particle A plus B) linear momentum is conserved (both i and j directions). What are the velocities of center of the system before and after collision?b) Find the system’s % KE lost due to the collision (m=20.0gram). c) If the collision time between A and B is 0.050 s, what is the average force between A and B during the collision?

Solutions

Expert Solution


Related Solutions

article 1 of mass 293 g and speed 4.86 m/s undergoes a one-dimensional collision with stationary...
article 1 of mass 293 g and speed 4.86 m/s undergoes a one-dimensional collision with stationary particle 2 of mass 309 g. What is the magnitude of the impulse on particle 1 if the collision is (a) elastic and (b) completely inelastic?
ball A of mass 0.55kg has a velocity of 0.65m/s east. it strikes a stationary ball...
ball A of mass 0.55kg has a velocity of 0.65m/s east. it strikes a stationary ball also of mass 0.55kg ball A deflects off ball B at an angle of 37 degrees north of A's original path. ball B moves in a line 90 degree right of the final path of A. find the momentum of ball A and ball B after the collision.
Two equal mass object experience a totally inelastic elastic collision. Mass 1 has an initial velocity...
Two equal mass object experience a totally inelastic elastic collision. Mass 1 has an initial velocity of 10 m/s in the negative y-direction. Mass 2 has an initial velocity of 10 m/s in the positive x-direction. The collision occurs at the origin. What is the magnitude and direction of the velocity of the combined mass? What is the kinetic energy conserved in the collision? If not what fraction of kinetic energy was lost?
Particle A (mA = 1 kg) is given initial velocity 10 m/s to the right, while...
Particle A (mA = 1 kg) is given initial velocity 10 m/s to the right, while particle B (mB = 1:5 kg) is initially at rest. The coecient of restitution for any impact between A and B is 2/3 while the coecient of restitution for impact of either particle with either wall is 5/6. The particles slide along a smooth horizontal supporting surface. Compute the percentage of the kinetic energy remaining in the system of A and B at the...
A particle with speed V1= 75 m/s makes a glancing elastic collision with another particle that...
A particle with speed V1= 75 m/s makes a glancing elastic collision with another particle that initially is at rest. Both particles have the same mass. After the collision, the struck particles moves off at an angle that is 45 degrees above the line along V1. The second particle moves off at 45 degree below this line. The speed of the struck particle after the colllision is approximately. A: 38 m/s B: 82 m/s C: 64 m/s D: 47 m/s...
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a...
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a plane, inclined at 28◦ with respect to the horizontal. The coefficient of kinetic friction is 0.69. The box stops after sliding a distance x. a. How far does the box slide? The acceleration due to gravity is 9.8 m/s 2 . The positive x-direction is down the plane. Answer in units of m. b. What is the the work done by friction? Answer in...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object? b)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on inelastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object?
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s,...
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s, collides with and sticks to an object of mass 2.01 kg with an initial velocity of -3.62 j hat m/s. Find the final velocity of the composite object. v=(......i+.....j)
A mass m=29.0 kg slides on a frictionless track with initial velocity vA=16.5 m/s at Position...
A mass m=29.0 kg slides on a frictionless track with initial velocity vA=16.5 m/s at Position A with height hA=53.1 m. It passes over a lower hill with a height hB=26.4 m (at Position B) before stopping by running into a large spring with spring constant k=5058 N/m at Position C at height hC=23.5 m. The mass is brought to a stop at Position D, after compressing the spring by a length of d. Find the speed of the object...
A particle of mass 1.30 kg is moving with velocity v⃗ =(7.4i^+5.6j^)m/s. 1) Find the angular...
A particle of mass 1.30 kg is moving with velocity v⃗ =(7.4i^+5.6j^)m/s. 1) Find the angular momentum L⃗ relative to the origin when the particle is at r⃗ =(2.9j^+4.3k^)m. Enter your answers in indicated order separated by commas. Express your answer using two significant figures. Lx,Ly,Lz = 2) At position r⃗ a force of F⃗ =5.0Ni^ is applied to the particle. Find the torque relative to the origin. Enter your answers in indicated order separated by commas. Express your answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT