Question

In: Physics

article 1 of mass 293 g and speed 4.86 m/s undergoes a one-dimensional collision with stationary...

article 1 of mass 293 g and speed 4.86 m/s undergoes a one-dimensional collision with stationary particle 2 of mass 309 g. What is the magnitude of the impulse on particle 1 if the collision is (a) elastic and (b) completely inelastic?

Solutions

Expert Solution

Magnitude of impulse on particle 1 in elastic collision and completely inelastic collision can be find using below formula

  


Related Solutions

A mass (m) with speed (v) experiences a perfectly elastic collision with an initially stationary mass...
A mass (m) with speed (v) experiences a perfectly elastic collision with an initially stationary mass (M). What is the ratio of the masses (m/M) if after the collision, m and M have the same speed (V) but opposite velocities?
Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle...
Particle A of mass m, initial velocity 20i (m/s) has a collision with a stationary particle B of mass 2m. After collision, VA(final)=10i+5j (m/s). a) Find VB(final) if the system (particle A plus B) linear momentum is conserved (both i and j directions). What are the velocities of center of the system before and after collision?b) Find the system’s % KE lost due to the collision (m=20.0gram). c) If the collision time between A and B is 0.050 s, what...
A 7.61 kg block, traveling at a speed of 21.0 m/s, undergoes a perfectly inelastic collision...
A 7.61 kg block, traveling at a speed of 21.0 m/s, undergoes a perfectly inelastic collision with a 12.9 kg block which starts at rest. a) Find the final speed of each block. b) Calculate how much energy was lost in the collision (final kinetic energy minus initial kinetic energy). If you were unable to calculate the answer to part (a), assume the final velocity is 5.00 m/s. c) How much energy would have been lost if the collision were...
A puck with a mass m1 = 28.0 g moving at 1.00 m/s approaches a stationary...
A puck with a mass m1 = 28.0 g moving at 1.00 m/s approaches a stationary puck with a mass m2 = 102 g on an air table and they undergo a two-dimensional elastic collision. As a result of their interaction, the incident puck moves away with a speed v1 = 0.785 m/s and the other puck moves away with a speed v2 in a different direction. What is the angle between the velocities v1 and v2 ? Explain please!!!
A 750-g disk sliding along frictionless ice with a speed of 8.5 m/s strikes a stationary...
A 750-g disk sliding along frictionless ice with a speed of 8.5 m/s strikes a stationary rod-disk combo 12-cm from its center-of-mass. This rod-disk combo is made from a 360-g rod that is 35-cm long, with 2 150-g solid disks of radius 7.0-cm attached, one on each end of the rod. After the perfectly elastic collision, the disk moves off along a path that is 28º above its original path, while the rod-disk combo spins about its center-of-mass as it...
A ball of mass 8.1 g with a speed of 22.6 m/s strikes a wall at...
A ball of mass 8.1 g with a speed of 22.6 m/s strikes a wall at an angle 11.0o and then rebounds with the same speed and angle. It is in contact with the wall for 44.0 ms. What is the magnitude of the impulse associated with the collision force?
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision...
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass m2 = 5m1. Prior to the collision, the center of mass of the two-block system had a speed of 8.40 m/s. a) what is the speed of the center of mass after the collision? b)What is the speed if the block 2 after the collisions?
Suppose we model a golf club hitting a stationary golf ball as a one-dimensional elastic collision...
Suppose we model a golf club hitting a stationary golf ball as a one-dimensional elastic collision between the moving club and the stationary ball. Suppose the golfer can swing the club so that the 0.200 kg head has a velocity of 48 m/s when it strikes the ball of mass 0.045 kg. Determine the speed of the ball after the collision. If the golfer uses a heavier mass club, one with double the mass, and was able to swing with...
1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass....
1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.81 m/s at an angle of 34.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision. (a)magnitude_____ m/s (b) direction_____ ° (with respect to the original line of motion) 2. A rod of length 36.00 cm has linear density...
1. A sample of a compound has a mass of 4.86 g and is composed of Silicon and Oxygen. What is the percent composition if 2.27 g of the mass is Silicon?
  1. A sample of a compound has a mass of 4.86 g and is composed of Silicon and Oxygen. What is the percent composition if 2.27 g of the mass is Silicon? 2. What is the percent composition of all of the elements in saccharin (C7H5SNO3)? 3. What is the mass of phosphorus in a 25.0lb quantity of sodium phosphate?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT