Question

In: Advanced Math

One particle travels along the path p1(t) = <2.666 cos(6.405t + 5.149) + 4.430, 2.666 sin(6.405t...

One particle travels along the path

p1(t) = <2.666 cos(6.405t + 5.149) + 4.430, 2.666 sin(6.405t + 5.149) − 3.610, 11.18t + 6.633>

and another along the path

p2(t) = <1.084t + 3.125, 3.096t − 5.332, −2.925t + 4.377>.

The paths intersect at two points, one of which is a collision. Find the point where the particles collide and the other point where the paths intersect.

Solutions

Expert Solution


Related Solutions

A particle travelS along the circular path from A to B in 1s. If it takeS...
A particle travelS along the circular path from A to B in 1s. If it takeS 3S for it to go from A to C. Determine Its average velocity when it goes from B to C.
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >,...
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >, use the formula below to find the given derivative. d/(dt)[u(t)* v(t)] = u'(t)* v(t) + u(t)*  v'(t) d/(dt)[u(t) x v(t)] = <.______ , _________ , _______>
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral...
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral x dx−y dy + z^2 dz
Determine the parametric equations of the path of a particle that travels the circle: (x −...
Determine the parametric equations of the path of a particle that travels the circle: (x − 3)2 + (y − 2)2 = 4 on a time interval of 0≤t≤2π A) if the particle makes one full circle starting at the point (5,2) traveling counterclockwise. x(t)=?, y(t)=? B) if the particle makes one full circle starting at the point (3,4) traveling clockwise. x(t)=?, y(t)=? C) if the particle makes one half of a circle starting at the point (5,2) traveling clockwise....
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is...
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is a cycloid. (a) Find the slope of the tangent line to the cycloid for 0 < t < 2π. dy dx (b) Find an equation of the tangent line to the cycloid at t = π 3 (c) Find the length of the cycloid from t = 0 to t = π 2
Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height...
Suppose r(t)=cos(πt)i+sin(πt)j+2tk represents the position of a particle on a helix, where z is the height of the particle. (a) What is t when the particle has height 8? (b) What is the velocity of the particle when its height is 8? (c) When the particle has height 8, it leaves the helix and moves along the tangent line at the constant velocity found in part (b). Find a vector parametric equation for the position of the particle (in terms...
at time t= 0 , a particle is located at the point (4,8,7). it travels in...
at time t= 0 , a particle is located at the point (4,8,7). it travels in a straight line to the point (7,1,6) has speed 7 at (4,8,7) and constant acceleration 3i-7j-k. find an equation for the position vector r(t) of the particle at time t
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT