Question

In: Advanced Math

One particle travels along the path p1(t) = <2.666 cos(6.405t + 5.149) + 4.430, 2.666 sin(6.405t...

One particle travels along the path

p1(t) = <2.666 cos(6.405t + 5.149) + 4.430, 2.666 sin(6.405t + 5.149) − 3.610, 11.18t + 6.633>

and another along the path

p2(t) = <1.084t + 3.125, 3.096t − 5.332, −2.925t + 4.377>.

The paths intersect at two points, one of which is a collision. Find the point where the particles collide and the other point where the paths intersect.

Solutions

Expert Solution


Related Solutions

A particle travelS along the circular path from A to B in 1s. If it takeS...
A particle travelS along the circular path from A to B in 1s. If it takeS 3S for it to go from A to C. Determine Its average velocity when it goes from B to C.
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >,...
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t, cos(4t), sin(8t) >, use the formula below to find the given derivative. d/(dt)[u(t)* v(t)] = u'(t)* v(t) + u(t)*  v'(t) d/(dt)[u(t) x v(t)] = <.______ , _________ , _______>
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >,...
If u(t) = < sin(5t), cos(5t), t > and v(t) = < t, cos(5t), sin(5t) >, use the formula below to find the given derivative. d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t) d/dt [ u(t) x v(t)] = ?
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral...
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral x dx−y dy + z^2 dz
Determine the parametric equations of the path of a particle that travels the circle: (x −...
Determine the parametric equations of the path of a particle that travels the circle: (x − 3)2 + (y − 2)2 = 4 on a time interval of 0≤t≤2π A) if the particle makes one full circle starting at the point (5,2) traveling counterclockwise. x(t)=?, y(t)=? B) if the particle makes one full circle starting at the point (3,4) traveling clockwise. x(t)=?, y(t)=? C) if the particle makes one half of a circle starting at the point (5,2) traveling clockwise....
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is...
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is a cycloid. (a) Find the slope of the tangent line to the cycloid for 0 < t < 2π. dy dx (b) Find an equation of the tangent line to the cycloid at t = π 3 (c) Find the length of the cycloid from t = 0 to t = π 2
at time t= 0 , a particle is located at the point (4,8,7). it travels in...
at time t= 0 , a particle is located at the point (4,8,7). it travels in a straight line to the point (7,1,6) has speed 7 at (4,8,7) and constant acceleration 3i-7j-k. find an equation for the position vector r(t) of the particle at time t
Calculate the Frenet framing, curvature and torsion of the helix (a cos(t), a sin(t), bt)
Calculate the Frenet framing, curvature and torsion of the helix (a cos(t), a sin(t), bt)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT