In: Advanced Math
be two linear transformation with range (T1) =
range(T2) .
Let { v1 , v2 ,...,vm } be a basis of range(T1) .
There exist { u1 , u2 , ... ,um}
and{ w1 , w2 , ... ,wm}
such that
T1( u1 ) = v1 , T2( w1) = v1
T1( u2) = v2 , T2 ( w2 ) = v2
..................
Tm( um ) = vm , Tm( wm ) = vm .
Since { v1 , v2 ,...,vm } be a basis of range(T1) so { u1 , u2 , ... ,um} and { w1 , w2 , ... ,wm} are also linearly independent because image of linearly dependent set is linearly dependent .
Now since { u1 , u2 , ... ,um}
and { w1 , w2 , ... ,wm} are
linearly independent so they can be extend to a basis of
.
Let { u1 , u2 , ... ,um ,
um+1 ,..., un } and {
w1 , w2 , ... ,wm ,
wm+1 , ...,wn } are basis of
.
U(ui ) = wi for all i = 1,2 ,...,n