In: Finance
A couple has just purchased a home for $348,400.00. They will pay 20% down in cash, and finance the remaining balance. The mortgage broker has gotten them a mortgage rate of 5.04% APR with monthly compounding. The mortgage has a term of 30 years. How much interest is paid in the first year?
$13,954.04
Working:
Monthly Payment | = | Loan Amount/cumulative disocount factor | |||||||||
= | $ 2,78,720.00 | / | 185.43624 | ||||||||
= | $ 1,503.05 | ||||||||||
Working: | |||||||||||
Loan Amount | = | $ 3,48,400.00 | x | (1-0.20) | = | $ 2,78,720.00 | |||||
Cumulative discount factor | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.0042)^-360)/0.0042 | i | 5.04%/12 | = | 0.0042 | ||||||
= | 185.43624 | n | 30*12 | = | 360 | ||||||
Amortization Schedule for first year (12 months) | |||||||||||
Months | Beginning | Monthly Payment | Interest expense | Reduction in principal | Ending | ||||||
Loan Balance | Loan Balance | ||||||||||
a | b | c=a*5.04%/12 | d=b-c | a-d | |||||||
1 | $ 2,78,720.00 | $ 1,503.05 | $ 1,170.62 | $ 332.43 | $ 2,78,387.57 | ||||||
2 | $ 2,78,387.57 | $ 1,503.05 | $ 1,169.23 | $ 333.82 | $ 2,78,053.75 | ||||||
3 | $ 2,78,053.75 | $ 1,503.05 | $ 1,167.83 | $ 335.22 | $ 2,77,718.53 | ||||||
4 | $ 2,77,718.53 | $ 1,503.05 | $ 1,166.42 | $ 336.63 | $ 2,77,381.89 | ||||||
5 | $ 2,77,381.89 | $ 1,503.05 | $ 1,165.00 | $ 338.05 | $ 2,77,043.85 | ||||||
6 | $ 2,77,043.85 | $ 1,503.05 | $ 1,163.58 | $ 339.47 | $ 2,76,704.38 | ||||||
7 | $ 2,76,704.38 | $ 1,503.05 | $ 1,162.16 | $ 340.89 | $ 2,76,363.49 | ||||||
8 | $ 2,76,363.49 | $ 1,503.05 | $ 1,160.73 | $ 342.32 | $ 2,76,021.17 | ||||||
9 | $ 2,76,021.17 | $ 1,503.05 | $ 1,159.29 | $ 343.76 | $ 2,75,677.40 | ||||||
10 | $ 2,75,677.40 | $ 1,503.05 | $ 1,157.85 | $ 345.21 | $ 2,75,332.20 | ||||||
11 | $ 2,75,332.20 | $ 1,503.05 | $ 1,156.40 | $ 346.66 | $ 2,74,985.54 | ||||||
12 | $ 2,74,985.54 | $ 1,503.05 | $ 1,154.94 | $ 348.11 | $ 2,74,637.43 | ||||||
Total | $ 18,036.60 | $ 13,954.04 | $ 4,082.57 | ||||||||