In: Nursing
Outline the unique hormonal regulation for glycogen degradation in liver and muscle. Also, include the roles of insulin, glucagon, and Epinephrine in your answer. (Flow chart is acceptable)
Glycogen
Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body.
Glycogen provides an additional source of glucose besides that produced via gluconeogenesis. Because glycogen contains so many glucoses, it acts like a battery backup for the body, providing a quick source of glucose when needed and providing a place to store excess glucose when glucose concentrations in the blood rise. The branching of glycogen is an important feature of the molecule metabolically as well. Since glycogen is broken down from the "ends" of the molecule, more branches translate to more ends, and more glucose that can be released at once. Liver and skeletal muscle are primary sites in the body where glycogen is found.
Phosphorolysis of alpha-1,4-glycosidic bonds of glycogen to release glucose-1-phosphate sequentially from the non-reducing end by glycogen phosphorylase:
Insulin stimulates the liver to store glucose in the form of glycogen. A large fraction of glucose absorbed from the small intestine is immediately taken up by hepatocytes, which convert it into the storage polymer glycogen. Insulin has several effects in liver which stimulate glycogen synthesis.
Epinephrine markedly stimulates glycogen breakdown in muscle and, to a lesser extent, in the liver. The liver is more responsive to glucagon, a polypeptide hormone that is secreted by the α cells of the pancreas when the blood-sugar level is low.