Question

In: Math

Approximate the area under the graph of f(x)=0.03x4−1.44x2+58 over the interval [2,10] by dividing the interval...

Approximate the area under the graph of f(x)=0.03x4−1.44x2+58 over the interval [2,10] by dividing the interval into 4 subintervals. Use the left endpoint of each subinterval.

The area under the graph of f(x)=0.03x4−1.44x2+58 over the interval [2,10] is approximately ...

Solutions

Expert Solution


Related Solutions

Approximate the area under the graph of​ f(x) and above the​ x-axis with​ rectangles, using the...
Approximate the area under the graph of​ f(x) and above the​ x-axis with​ rectangles, using the following methods with n=4. ​f(x)=88x+55                               from x=44 to x=66 a. Use left endpoints.   b. Use right endpoints.   c. Average the answers in parts a and b. d. Use midpoints.
Estimate the area under the graph of f ( x ) = 1(x + 1) over...
Estimate the area under the graph of f ( x ) = 1(x + 1) over the interval [ 3 , 5 ] using two hundred approximating rectangles and right endpoints R n = Repeat the approximation using left endpoints L n =
Estimate the area under the graph of f(x)=1/(x+4) over the interval [-1,2] using five approximating rectangles...
Estimate the area under the graph of f(x)=1/(x+4) over the interval [-1,2] using five approximating rectangles and right endpoints. Rn= Repeat the approximation using left endpoints. Ln=
Find the area under the graph of f over the interval left bracket 7 comma 9...
Find the area under the graph of f over the interval left bracket 7 comma 9 right bracket[7,9]. ​f(x)equals=StartSet Start 2 By 2 Matrix 1st Row 1st Column 4 x plus 9 comma 2nd Column for x less than or equals 8 2nd Row 1st Column 81 minus 5 x comma 2nd Column for x greater than 8 EndMatrix 4x+9, for x≤8 81−5x, for x>8 The area is nothing. 2) Find the area of the region bounded by the graphs...
Find the approximate area under the curve by dividing the intervals into n subintervals and then...
Find the approximate area under the curve by dividing the intervals into n subintervals and then adding up the areas of the inscribed rectangles. The height of each rectangle may be found by evaluating the function for each value of x. Your instructor will assign you n_1 = 4 and n_2 = 8. 1. y=2x√(x^2+1) Between x = 0 and x = 6 for n1 = 4, and n2 = 8 2. Find the exact area under the curve using...
Find the approximate area under the curve by dividing the intervals into (n) subintervals and then...
Find the approximate area under the curve by dividing the intervals into (n) subintervals and then adding up the areas of the inscribed rectangles. The height of each rectangle may be found by evaluating the function for each value of x. Your instructor will assign you (n1) and (n2) y = 2x square root x^2 + 1 between x = 0 and x = 6 for n1 = 4 and n2 = 8 Find the exact area under the curve...
Use finite approximation to estimate the area under the graph f(x)= 8x2 and above graph f(x)...
Use finite approximation to estimate the area under the graph f(x)= 8x2 and above graph f(x) = 0 from X0 = 0 to Xn = 16 using i) lower sum with two rectangles of equal width ii) lower sum with four rectangles of equal width iii) upper sum with two rectangles of equal width iv) upper sum with four rectangle of equal width
(a) Estimate the area under the graph of f(x) = 3 + 4x2 from x =...
(a) Estimate the area under the graph of f(x) = 3 + 4x2 from x = −1 to x = 2 using three rectangles and right endpoints. R3 = Then improve your estimate by using six rectangles. R6 = Sketch the curve and the approximating rectangles for R3 andR6. (b) Repeat part (a) using left endpoints. L3 = L6 = Sketch the curve and the approximating rectangles for L3 and L6. (c) Repeat part (a) using midpoints. M3 = M6...
(a) Estimate the area under the graph of f(x) = 3 + 4x2 from x =...
(a) Estimate the area under the graph of f(x) = 3 + 4x2 from x = −1 to x = 2 using three rectangles and right endpoints. R3 = Then improve your estimate by using six rectangles. R6 = Sketch the curve and the approximating rectangles for R3. Sketch the curve and the approximating rectangles for R6. (b) Repeat part (a) using left endpoints. L3 = L6 = Sketch the curve and the approximating rectangles for L3. Sketch the curve...
approximate the area under f(x) = 10x - x2, above the x-axis, on [1,7] with n...
approximate the area under f(x) = 10x - x2, above the x-axis, on [1,7] with n = 6 rectangles using the left and right endpoint, trapezoidal rule and midpoint methods (include summation notation and endpoint values) and then find the exact area using a definite integral (include a graph with shaded region)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT