Question

In: Statistics and Probability

The inlet pressure of a steam generator is to be held constant at 5.00 MPa. During...

The inlet pressure of a steam generator is to be held constant at 5.00 MPa. During the test, the inlet pressure was measured 120 times. The resolution of the digital pressure gauge used was 0.001 MPa. The number of results, m, is the number of readings falling in an interval of ±0.04 MPa centered about the listed pressure.

Pressure, p, in MPa

Number of Results, m

4.960

4

4.970

6

4.980

6

4.990

35

5.000

45

5.010

14

5.020

5

5.030

4

5.040

1

a)     a) Find the mean and standard deviation of the given pressure data.

b) b)  Determine 95% confidence interval for the calculated mean pressure.

c) Conduct a hypothesis testing if the data obtained indicate a target pressure of 5.00 MPa at a confidence level of 99

Solutions

Expert Solution

Step 1 : Find the relative frequency(probability)

Step 2 : Find the mean and standard deviation

Step 3 : 95% confidence interval

Step 4 : Hypothesis testing



Related Solutions

A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The...
A steam turbine operates with steam at inlet conditions of 3.5 MPa and 3500 C. The exit stream leave the turbine is at 0.8 MPa and is known to contain a mixture of saturated vapor and liquid. The steam rate through the turbine is 1000 kg/h. A (negligible) fraction of exit stream is bled through a throttle valve to 0.10 MPa and is found to be 1250 C. The measured output of the turbine is 100 kW. a) Determine the...
The temperature and pressure of the steam at the inlet of a high pressure turbine is...
The temperature and pressure of the steam at the inlet of a high pressure turbine is 500 ° C, respectively. It is 12 MPa and 300 ° C and 3MPa at its outlet. If the mass flow of steam is 400 kg / h, how much is the isentropic efficiency of the turbine?
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa,...
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C and 80 m/s, and the exit conditions are 30 kPa, 92% quality and 50 m/s. The mass flowrate of the steam is 12 kg/s. Investigate the effect of the turbine exit pressure on the power output of the turbine. Let the exit pressure vary from 10 to 200 kPa. Plot (1) T2 vs P2 and 2) Plot the power output (W_dot_T in MW)...
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.7 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.3 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
Steam at 32 MPa, 520◦C leaves the steam generator of an ideal Rankine cycle modified to...
Steam at 32 MPa, 520◦C leaves the steam generator of an ideal Rankine cycle modified to include three turbine stages with reheat between the stages. The reheat pressures are 4 and 0.5 MPa, respectively, and steam enters the second- stage turbine at 440◦C and the third-stage turbine at 360◦C. The condenser pressure is 0.08 bar. Determine for the cycle a) The net work per unit mass of steam flowing, in kJ/kg. b) The thermal efficiency.
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450...
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450 C with a velocity of 140 m/s. the exit of the turbine is 800 kPa and 300 C at a very low velocity. Calculate a.) the work produced in (MW) by the turbine, and b.) The entropy generated in (kW/k)
Steam is contained in a 4-liter volume at a pressure of 1.5 MPa and a temperature...
Steam is contained in a 4-liter volume at a pressure of 1.5 MPa and a temperature of 200°C. If the pressure is held constant by expanding the volume while 40 kJ of heat is added, find the final temperature. use enthalpy.
a steam turbine has an inlet flow of 3 kg/s water at 3.5 MPa and 450°C...
a steam turbine has an inlet flow of 3 kg/s water at 3.5 MPa and 450°C with a velocity of 140 m/s. The exit is at 800 KPa and 300°C and very low velocity. (a) How much heat (in MW) is assumed to be transferred into the turbine? (b) what is the work that goes into the turbine? (c) find the work produced by the turbine? (d) Find the entropy generation of the process. (e) find the carnot efficiency of...
Steam expands in a thermally isolated turbine steadily. The inlet pressure is 1MPa and temperature is...
Steam expands in a thermally isolated turbine steadily. The inlet pressure is 1MPa and temperature is 800 C, and the exit state is 300 kPA and 150 C. a- Determine the power generated by the turbine per unit mass flow rate of steam. b- Evaluate the entropy generation rate per unit mass flow rate of steam and drive a conclusion whether the turbine operates reversibly, irreversibly or the operation is impossible.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT