Question

In: Advanced Math

Course: Math Modeling A tank contains 8 L (liters) of water in which is dissolved 32...

Course: Math Modeling

A tank contains 8 L (liters) of water in which is dissolved 32 g (grams) of salt. A solution containing 2 g/L of the brine flows into the tank at a rate of 9 L/min, and the well-stirred mixture flows out at a rate of 5 L/min.

    A) Find an equation to model this system using A to represent the amount of salt in the tank and t to represent minutes.

    B) Find the amount of salt in the tank after 4 minutes.

Solutions

Expert Solution


Related Solutions

A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters...
A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes? (b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.)
Consider two interconnected tanks. Tank 1 initial contains 40 L (liters) of water and 160 g...
Consider two interconnected tanks. Tank 1 initial contains 40 L (liters) of water and 160 g of salt, while tank 2 initially contains 20 L of water and 250 g of salt. Water containing 20 g/L of salt is poured into tank1 at a rate of 2 L/min while the mixture flowing into tank 2 contains a salt concentration of 35 g/L of salt and is flowing at the rate of 2.5 L/min. The two connecting tubes have a flow...
A tank initially contains 10 liters of clean water (with no salt in it). Every minute,...
A tank initially contains 10 liters of clean water (with no salt in it). Every minute, a solution containing one liter of water and one gram of salt is added to the tank, and two liters of fluid are drained from the tank. The fluid in the tank is mixed continuously so that the salt is distributed evenly throughout the water in the tank. How many minutes does it take for the tank to contain 2 grams of salt?
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of...
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of salt enters the tank at the rate 16L/min. The solution is mixed and drains from the tank at the rate 4L/min. A(t) is the amount of salt in the tank at time t measured in kilograms. (a) A(0) =  (kg) (b) A differential equation for the amount of salt in the tank is  =0=0. (Use t,A, A', A'', for your variables, not A(t), and move everything...
1. A tank initially contains 200 liters of saltwater, with a concentration of 2g/L salt. Saltwater...
1. A tank initially contains 200 liters of saltwater, with a concentration of 2g/L salt. Saltwater with a concentration of 5g/L flows into the tank at 2L/min and the well-mixed solution flows out of the tank at the rate of 4L/min. (a) Set up, but do NOT solve, the initial value problem whose solution will be the VOLUME OF LIQUID in the tank as a function of time (b) Solve the IVP from the previous part and find the volume...
A tank contains 2340 L of pure water. A solution that contains 0.07 kg of sugar...
A tank contains 2340 L of pure water. A solution that contains 0.07 kg of sugar per liter enters a tank at the rate 9 L/min The solution is mixed and drains from the tank at the same rate. (a) How much sugar is in the tank initially? (kg) (b) Find the amount of sugar in the tank after ?t minutes. amount =   (kg) (your answer should be a function of ?t) (c) Find the concentration of sugar in the solution...
A tank contains 2140 L of pure water. A solution that contains 0.01 kg of sugar...
A tank contains 2140 L of pure water. A solution that contains 0.01 kg of sugar per liter enters a tank at the rate 6 L/min. The solution is mixed and drains from the tank at the same rate. (a) How much sugar is in the tank initially? (b) Find the amount of sugar in the tank after t minutes. (c) Find the concentration of sugar (kg/L) in the solution in the tank after 51 minutes.
A tank contains 2800 L of pure water. A solution that contains 001 kg of sugar...
A tank contains 2800 L of pure water. A solution that contains 001 kg of sugar per liter enters a tank at the rate 9 L/min The solution is mixed and drains from the tank at the same rate. a) How much sugar is in the tank initially? b) Find the amount of sugar in the tank after t minutes. amount = (kg) (your answer should be a function of t) c) Find the concentration of sugar in the solution...
This is an ODE related question, A 1500 L tank initally contains 600 L of water...
This is an ODE related question, A 1500 L tank initally contains 600 L of water with 50 kg of salt in it. Water enters the tank at a rate of 9 L/hour and the water entering the tank has a salt concentration 0.1 kg/L. A well mixed solution leaves the tank at a rate of 6L/hour. a. The integrating factor that can be used to solved the differential equation for q(t) is? b. The amount of salt in the...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a tank at the rate 12 L/min. The solution is mixed and drains from the tank at the rate 6 L/min. (a) What is the amount of salt in the tank initially? amount =  (kg) (b) Find the amount of salt in the tank after 3 hours. amount =   (kg) (c) Find the concentration of salt in the solution in the tank as time approaches infinity. (Assume...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT