Question

In: Math

A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters...

A tank contains 9,000 L of brine with 11 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes?

(b) How much salt is in the tank after 10 minutes? (Round your answer to one decimal place.)

Solutions

Expert Solution


Related Solutions

A tank contains 60 kg of salt and 1000 L of water. Pure water enters a...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a tank at the rate 12 L/min. The solution is mixed and drains from the tank at the rate 6 L/min. (a) What is the amount of salt in the tank initially? amount =  (kg) (b) Find the amount of salt in the tank after 3 hours. amount =   (kg) (c) Find the concentration of salt in the solution in the tank as time approaches infinity. (Assume...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 4 L/min. What is the amount of salt in the tank initially? Find the amount f salt in the tank after 4.5 hours. Find the concentration of salt in the solution in the tank as the time approaches infinity. (Assume your tank is large enough to...
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters...
A tank contains 1000L of pure water. Brine that contains 0.05kg of salt per liter enters the tank at a rate of 5L/min. Also, brine that contains 0.09kg of salt per liter enters the tank at a rate of 10L/min. The solution is kept thoroughly mixed and drains from the tank at a rate of 15L/min. Answer the following questions. 1. How much salt is in the tank after t minutes? Answer (in kilograms): S(t)= 2. How much salt is...
A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain...
A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain 0.041 kg of salt per liter of water enters the tank at a rate of 25 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much Kg salt remains in the tank if as time approaches to infinite?
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters...
A tank initially contains 80gal of pure water. Brine containing 2lb of salt per gallon enters the tank at 2gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus the tank is empty after exactly 80 min. (A) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at...
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at the rate 6L/min. The solution is mixed and drains from the tank at the rate 3L/min. ) Find the concentration(kg/L) of salt in the solution in the tank as time approaches infinity. (Assume your tank is large enough to hold all the solution.)
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution...
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution is pumped into the tank at a rate of 4 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 4 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal. A(t) =
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of...
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of salt enters the tank at the rate 16L/min. The solution is mixed and drains from the tank at the rate 4L/min. A(t) is the amount of salt in the tank at time t measured in kilograms. (a) A(0) =  (kg) (b) A differential equation for the amount of salt in the tank is  =0=0. (Use t,A, A', A'', for your variables, not A(t), and move everything...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A...
A tank initially contains 150 gal of brine in which 20lb of salt are dissolved. A brine containing 3 ​lb/gal of salt runs into the tank at the rate of 4 gal/min.The mixture is kept uniform by stirring and flows out of the tank at the rate of 3 gal/min. Let y represent the amount of salt at time t. Complete parts a through e. a. At what rate​ (pounds per​ minute) does salt enter the tank at time​ t?...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3...
A tank contains 100 gal of water. Brine enters the tank at the rate of 3 gal/min. The mixture, thoroughly stirred, leaves the tank at the rate of 2 gal/min. If the salt concentration in the brine at the end of 20 minutes is to be 2 lb/gal, what should be the salt concentration in the brine entering the tank?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT