Question

In: Math

This is an ODE related question, A 1500 L tank initally contains 600 L of water...

This is an ODE related question,

A 1500 L tank initally contains 600 L of water with 50 kg of salt in it. Water enters the tank at a rate of 9 L/hour and the water entering the tank has a salt concentration 0.1 kg/L. A well mixed solution leaves the tank at a rate of 6L/hour.

a. The integrating factor that can be used to solved the differential equation for q(t) is?

b. The amount of salt in the tank when the tank overflows is?

Solutions

Expert Solution


Related Solutions

A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of...
A tank contains 70 kg of salt and 2000 L of water. Water containing 0.4kg/L of salt enters the tank at the rate 16L/min. The solution is mixed and drains from the tank at the rate 4L/min. A(t) is the amount of salt in the tank at time t measured in kilograms. (a) A(0) =  (kg) (b) A differential equation for the amount of salt in the tank is  =0=0. (Use t,A, A', A'', for your variables, not A(t), and move everything...
A tank contains 2340 L of pure water. A solution that contains 0.07 kg of sugar...
A tank contains 2340 L of pure water. A solution that contains 0.07 kg of sugar per liter enters a tank at the rate 9 L/min The solution is mixed and drains from the tank at the same rate. (a) How much sugar is in the tank initially? (kg) (b) Find the amount of sugar in the tank after ?t minutes. amount =   (kg) (your answer should be a function of ?t) (c) Find the concentration of sugar in the solution...
A tank contains 2140 L of pure water. A solution that contains 0.01 kg of sugar...
A tank contains 2140 L of pure water. A solution that contains 0.01 kg of sugar per liter enters a tank at the rate 6 L/min. The solution is mixed and drains from the tank at the same rate. (a) How much sugar is in the tank initially? (b) Find the amount of sugar in the tank after t minutes. (c) Find the concentration of sugar (kg/L) in the solution in the tank after 51 minutes.
A tank contains 2800 L of pure water. A solution that contains 001 kg of sugar...
A tank contains 2800 L of pure water. A solution that contains 001 kg of sugar per liter enters a tank at the rate 9 L/min The solution is mixed and drains from the tank at the same rate. a) How much sugar is in the tank initially? b) Find the amount of sugar in the tank after t minutes. amount = (kg) (your answer should be a function of t) c) Find the concentration of sugar in the solution...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a...
A tank contains 60 kg of salt and 1000 L of water. Pure water enters a tank at the rate 12 L/min. The solution is mixed and drains from the tank at the rate 6 L/min. (a) What is the amount of salt in the tank initially? amount =  (kg) (b) Find the amount of salt in the tank after 3 hours. amount =   (kg) (c) Find the concentration of salt in the solution in the tank as time approaches infinity. (Assume...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 4 L/min. What is the amount of salt in the tank initially? Find the amount f salt in the tank after 4.5 hours. Find the concentration of salt in the solution in the tank as the time approaches infinity. (Assume your tank is large enough to...
A tank contains 220 L of pure water. Solution that contains 0.08 kg of sugar per...
A tank contains 220 L of pure water. Solution that contains 0.08 kg of sugar per liter enters the tank at the rate 8 L/min, and is thoroughly mixed into it. The new solution drains out of the tank at the same rate. (a) How much sugar is in the tank at the begining? y(0)=___ kg (b) Find the amount of sugar after t minutes. y(t)=___ kg (c) As t becomes large, what value is y(t) approaching ? In other...
A 500 L rigid tank contains a saturated water mixture at 200 C as shown: the...
A 500 L rigid tank contains a saturated water mixture at 200 C as shown: the mixture is 40% liquid and 60% vapour by volume (State 1). A valve on top of the tank is opened, and saturated vapor is slowly withdrawn from the tank. Heat transfer occurs during this process such that the temperature in the tank remains constant. The valve is closed when 50 % of the initial mass is withdrawn from the tank (State 2) (a) Determine...
A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain...
A tank contains 20 kg of salt dissolve in 7000 L of water. Brine that contain 0.041 kg of salt per liter of water enters the tank at a rate of 25 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much Kg salt remains in the tank if as time approaches to infinite?
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at...
A tank contains 100kg of salt and 2000L of water. Pure water enters a tank at the rate 6L/min. The solution is mixed and drains from the tank at the rate 3L/min. ) Find the concentration(kg/L) of salt in the solution in the tank as time approaches infinity. (Assume your tank is large enough to hold all the solution.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT