Question

In: Chemistry

Find the ΔG of the following reaction when there is 1.64 M A in solution. The...

Find the ΔG of the following reaction when there is 1.64 M A in solution. The equilibrium concentrations were found to be 1.00 M A, 0.97 M B, 1.07 M C, 0.55 M D and the temperature is 298K.

2A + B <==> 3C + D

Solutions

Expert Solution


Related Solutions

1. Reaction 1 has a ΔG° of –12.3 kJ/mol, and Reaction 2 has a ΔG° of...
1. Reaction 1 has a ΔG° of –12.3 kJ/mol, and Reaction 2 has a ΔG° of 23.4 kJ/mol. Which statement is TRUE of these two reactions? Select one: A. Reaction 1 occurs faster. B. Reaction 2 occurs faster. C. Both reactions occur at the same rate. D. Reaction 2 will not occur. E. It is impossible to know which reaction occurs faster with this information. 2. Fructose-1-phosphate can be hydrolyzed into fructose + inorganic phosphate (Pi) with a ΔG° of...
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ΔH∘ and ΔS∘ΔS∘ do not change too much within the given temperature range.) Part B 1100 KK Express your answer using one decimal place. Part C 1420 KK Express your answer using one decimal place. Part D Predict whether or not the reaction in each part will be spontaneous. Drag the appropriate items to their respective bins. Reaction conducted at 1100 KK...
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) 295K 1010K 1450K
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range. A) 305 K B) 1075 K C) 1465 K
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) A. 320 K B. 1025 K C. 1420 K
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.) Part A 298 K
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures...
Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.) A)298 K B)735 K C)855 K
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol...
What is the intracellular glucose concentration if the ΔG for the following reaction is -20.1 kJ/mol at 37°C and concentrations for glucose-6-phosphate and phosphate are both 1 mM? glucose-6-phosphate --------> glucose + Pi ΔG° = -13.8 kJ/mol A) 1.9 M B) 87 M C) 1.9 mM D) 27 mM E) 87 mM The Answer is E. I just need help understanding why it is E. please show all your work. I really need to understand the entire process. Please don't...
c. For this reaction in heart muscle, ΔG°’ = +4.7 kJ/mol but ΔG = -0.6 kJ/mol....
c. For this reaction in heart muscle, ΔG°’ = +4.7 kJ/mol but ΔG = -0.6 kJ/mol. i. Explain, in words, how ΔG can be negative when ΔG°’ is positive. ii. What would be the ratio of 3PG to 2PG if the reaction were at equilibrium at 25°C? iii. What is the actual ratio of 3PG to 2PG in heart muscle (T = 37°C)?
For a standard normal distribution, find: P(-1.64 < z < -1.48)
For a standard normal distribution, find: P(-1.64 < z < -1.48)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT