In: Chemistry
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) 295K 1010K 1450K
Given:
Hof(CaCO3(s)) = -1206.92 KJ/mol
Hof(CaO(s)) = -635.09 KJ/mol
Hof(CO2(g)) = -393.509 KJ/mol
Balanced chemical equation is:
CaCO3(s) ---> CaO(s) + CO2(g)
ΔHo rxn = 1*Hof(CaO(s)) + 1*Hof(CO2(g)) - 1*Hof( CaCO3(s))
ΔHo rxn = 1*(-635.09) + 1*(-393.509) - 1*(-1206.92)
ΔHo rxn = 178.321 KJ
Given:
Sof(CaCO3(s)) = 92.9 J/mol.K
Sof(CaO(s)) = 39.75 J/mol.K
Sof(CO2(g)) = 213.74 J/mol.K
Balanced chemical equation is:
CaCO3(s) ---> CaO(s) + CO2(g)
ΔSo rxn = 1*Sof(CaO(s)) + 1*Sof(CO2(g)) - 1*Sof( CaCO3(s))
ΔSo rxn = 1*(39.75) + 1*(213.74) - 1*(92.9)
ΔSo rxn = 160.59 J/K
1)
So we have:
ΔHo rxn = 178.321 KJ
ΔSo rxn = 160.59 J/K
= 0.16059 KJ/K
T = 295 K
Now use:
ΔGo rxn = ΔHo rxn - T*ΔSo rxn
= 178.321 - 295.0*0.16059
= 131 KJ
Answer: 131 KJ
2)
Now use:
ΔGo rxn = ΔHo rxn - T*ΔSo rxn
= 178.321 - 1010*0.16059
= 16.1 KJ
Answer: 16.1 KJ
3)
Now use:
ΔGo rxn = ΔHo rxn - T*ΔSo rxn
= 178.321 - 1450*0.16059
= -54.5 KJ
Answer: -54.5 KJ