Question

In: Chemistry

Part A The activation energy of a certain reaction is 39.4kJ/mol . At 30 ?C ,...

Part A

The activation energy of a certain reaction is 39.4kJ/mol . At 30 ?C , the rate constant is 0.0190s?1. At what temperature in degrees Celsius would this reaction go twice as fast?

Express your answer with the appropriate units.

Part B

Given that the initial rate constant is 0.0190s?1 at an initial temperature of 30 ?C , what would the rate constant be at a temperature of 150 ?C for the same reaction described in Part A?

Express your answer with the appropriate units.

Solutions

Expert Solution

Part A

We're gonna need the Arrhenius equation shown as equation 1 below. I'm gonna try to minimize using equations to avoid confusion...

k1 refers to the rate constant given as 0.0190; I used a subscript 1 because this value changes with temperature T1 (given as 30 deg C but this one should be converted to Kelvin - 303 K).

A is called the frequency factor and varies slightly with small changes in temperature hence we can assume this as constant. Ea refers to the activation energy which is constant as well and is given as 39.4 kJ/mol but we need to convert this to.... 39400 J/mol when using the equation 1. R is the gas constant 8.31 J/K-mol.

Rearranging equation 1 to compute for A (frequency factor):

Now that we have A, we can now determine the required - temperature in deg C when reaction rate is twice.

Using equation 2 below.

taking natural logarithm to both sides of equation 2 would give us this equation 3:

k2 is just simply twice of k1 as mentioned in the problem. k2 = 2*k1 = 2*0.0190 = 0.038

A we assumed constant = 118712.26

Ea we assumed constant = 39400

R = 8.31

Rearranging and solving equation 3:

The answer to Part A is:

Part B

We can use the general equation:

with constant values of A and Ea

T is now 150 deg C = 423 K

Using the equation..

Final answer is:


Related Solutions

a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the...
a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the rate constant is 0.0170s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b,Given that the initial rate constant is 0.0170s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C...
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B: Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 130.  ∘C for the same reaction described in Part A? Express your...
Part A The activation energy of a certain reaction is 40.6 kJ/mol . At 20 ∘C...
Part A The activation energy of a certain reaction is 40.6 kJ/mol . At 20 ∘C , the rate constant is 0.0150s−1 . At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B Given that the initial rate constant is 0.0150s−1 at an initial temperature of 20 ∘C , what would the rate constant be at a temperature of 110. ∘C for the same reaction described in Part...
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C ,...
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C , the rate constant is 0.0120s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B) Given that the initial rate constant is 0.0120s−1 at an initial temperature of 27 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C ,...
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b)Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 100.  ∘C for the same reaction described in Part A?
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C ,...
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B. Given that the initial rate constant is 0.0190s−1 at an initial temperature of 29  ∘C , what would the rate constant be at a temperature of 120.  ∘C for the same reaction described in Part A? Please give the correct units too. Thank you!
The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate...
The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate constant is 0.0130 s−1. At what temperature would this reaction go twice as fast? Express your answer numerically in degrees Celsius
A certain reaction has an activation energy of 39.79 kJ/mol. At what Kelvin temperature will the...
A certain reaction has an activation energy of 39.79 kJ/mol. At what Kelvin temperature will the reaction proceed 6.50 times faster than it did at 339 K?
A certain first-order reaction has an activation energy of 53 kJ mol-1. It is run four...
A certain first-order reaction has an activation energy of 53 kJ mol-1. It is run four times, once at 298 K, again at 308 K, a third time at 398 K, and finally at 408 K. Assume that k1 = rate constant at 298 K, k2 = rate constant at 308 K, k3 = rate constant 398 K, and k4 = the rate constant at 408 K. Assuming that all other factors are identical, identify the correct ratios between rate...
A reaction has an activation energy of 12.2 kJ/mol at 25.0 °C. What temperature would you...
A reaction has an activation energy of 12.2 kJ/mol at 25.0 °C. What temperature would you need to run the reaction at for it to go 10 times faster?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT