Question

In: Chemistry

Part A The activation energy of a certain reaction is 40.6 kJ/mol . At 20 ∘C...

Part A

The activation energy of a certain reaction is 40.6 kJ/mol . At 20 ∘C , the rate constant is 0.0150s−1 . At what temperature in degrees Celsius would this reaction go twice as fast?

Express your answer with the appropriate units.

Part B

Given that the initial rate constant is 0.0150s−1 at an initial temperature of 20 ∘C , what would the rate constant be at a temperature of 110. ∘C for the same reaction described in Part A?

Express your answer with the appropriate units.

± The Arrhenius Equation

The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as

k=AeEa/RT

where R is the gas constant (8.314 J/mol⋅K ), A is a constant called the frequency factor, and Ea is the activation energy for the reaction.

However, a more practical form of this equation is

lnk2k1=EaR(1T1−1T2)

which is mathmatically equivalent to

lnk1k2=EaR(1T2−1T1)

where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1 and T2 ).

Solutions

Expert Solution

A)

if we want 2x (twice) as fast, then rate must be twice, therefore, rate constant must be 2x that of the original

K2 = 2*K1

K1 = K1, no need ot use numbers

Ahrrenius Equation 2 Points

From Ahrrenius equation;

K1 = A*exp(-Ea/(RT1))

K2 = A*exp(-Ea/(RT2))

Note that A and Ea are the same, they do not depend on Temperature ( in the range fo temperature given)

Then

Divide 2 and 1

K2/K1 = A/A*exp(-Ea/(RT2)) / exp(-Ea/(RT1))

Linearize:

ln(K2/K1) = -Ea/R*(1/T2-1/T1)

get rid of negative sign

ln(K2/K1) = Ea/R*(1/T1-1/T2)

now, substitute data known

ln(2K1/K1) = 40600/8.314*(1/(293) - 1/(T2))

note that T2 is in (K)

solve

ln(2) =  40600/8.314*(1/(293) - 1/(T2))

ln(2)*8.314/40600 - 1/293 = -1/T2

T2 = 0.0032710^-1

T2 = 0.0032710 =O 305.7169 K

T2 = 305.7169-273 = 32.7169 C

T = 32.7169 C must be in order to have a faster rate

B)

using the same equation:

ln(K2/K1) = Ea/R*(1/T1-1/T2)

now we need to solve for K2

Substitute all data but K2

ln(K2/(0.015)) = 40600/8.314*(1/(293) - 1/(110+273))

K2 = 0.015*exp(3.91644)

K2 = 0.753320 1/s


Related Solutions

The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate...
The activation energy of a certain reaction is 35 kJ/mol . At 20 ∘C, the rate constant is 0.0130 s−1. At what temperature would this reaction go twice as fast? Express your answer numerically in degrees Celsius
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C...
Part A: The activation energy of a certain reaction is 34.4 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B: Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 130.  ∘C for the same reaction described in Part A? Express your...
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C ,...
A) The activation energy of a certain reaction is 48.0 kJ/mol . At 27 ∘C , the rate constant is 0.0120s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B) Given that the initial rate constant is 0.0120s−1 at an initial temperature of 27 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C ,...
a) The activation energy of a certain reaction is 47.0 kJ/mol . At 24 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b)Given that the initial rate constant is 0.0190s−1 at an initial temperature of 24  ∘C , what would the rate constant be at a temperature of 100.  ∘C for the same reaction described in Part A?
a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the...
a,The activation energy of a certain reaction is 37.1 kJ/mol . At 30 ∘C , the rate constant is 0.0170s−1. At what temperature in degrees Celsius would this reaction go twice as fast? b,Given that the initial rate constant is 0.0170s−1 at an initial temperature of 30 ∘C , what would the rate constant be at a temperature of 170. ∘C for the same reaction described in Part A?
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C ,...
A. The activation energy of a certain reaction is 42.0 kJ/mol . At 29 ∘C , the rate constant is 0.0190s−1. At what temperature in degrees Celsius would this reaction go twice as fast? B. Given that the initial rate constant is 0.0190s−1 at an initial temperature of 29  ∘C , what would the rate constant be at a temperature of 120.  ∘C for the same reaction described in Part A? Please give the correct units too. Thank you!
Part A The activation energy of a certain reaction is 39.4kJ/mol . At 30 ?C ,...
Part A The activation energy of a certain reaction is 39.4kJ/mol . At 30 ?C , the rate constant is 0.0190s?1. At what temperature in degrees Celsius would this reaction go twice as fast? Express your answer with the appropriate units. Part B Given that the initial rate constant is 0.0190s?1 at an initial temperature of 30 ?C , what would the rate constant be at a temperature of 150 ?C for the same reaction described in Part A? Express...
A certain reaction has an activation energy of 39.79 kJ/mol. At what Kelvin temperature will the...
A certain reaction has an activation energy of 39.79 kJ/mol. At what Kelvin temperature will the reaction proceed 6.50 times faster than it did at 339 K?
The activation energy for a reaction is changed from 184 kJ/mol to 59.3 kJ/mol at 600....
The activation energy for a reaction is changed from 184 kJ/mol to 59.3 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2653 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant and assume the initial concentrations are the same
A certain first-order reaction has an activation energy of 53 kJ mol-1. It is run four...
A certain first-order reaction has an activation energy of 53 kJ mol-1. It is run four times, once at 298 K, again at 308 K, a third time at 398 K, and finally at 408 K. Assume that k1 = rate constant at 298 K, k2 = rate constant at 308 K, k3 = rate constant 398 K, and k4 = the rate constant at 408 K. Assuming that all other factors are identical, identify the correct ratios between rate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT