Find the absolute maximum and minimum, if either exists, for
the function on the indicated interval. f(x)=x^4+4x^3-7 (A) [-2,2]
(B) [-4,0] (C) [-2,1]
Find the absolute maximum and minimum, if either exists, for the
function on the indicated interval.
f(x)=x^3-6x^2+9x+5
(A) [-3,6] (B)[-3,3] (C)[2,6]
(A) Find the absolute maximum. Select the correct choice below
and, if necessary, fill in the answer boxes to complete your
choice.
How would you find the absolute maximum and the absolute minimum
over the interval of :
f(x)=x²+2.5x-6, -5 ≤ x ≤ 5
f(x)=12(1.5^x)+12(0.5^x), -3 ≤ x ≤ 5.1
Find the absolute maximum and absolute minimum values of
f on the given interval.
f(x) = x3 − 5x + 8, [0, 3]
absolute minimum value
absolute maximum value
Find the absolute maximum and absolute minimum values of
f on the given interval.
f(x) = 4x3 −
6x2 − 144x +
5,
[−4, 5]
absolute minimum
absolute maximum
Use the method of Lagrange multipliers to find the absolute
maximum and minimum values of the function f(x, y, z) = x^2yz^2
subject to the constraint 2x ^2 + 3y^ 2 + 6z^ 2 = 33
use the method of Lagrange multipliers to find the absolute
maximum and minimum values of the function subject to the given
constraints f(x,y)=x^2+y^2-2x-2y on the region x^2+y^2≤9 and
y≥0