Question

In: Statistics and Probability

The distribution of cholesterol levels in a boy is approximately normal with a mean of 170...

The distribution of cholesterol levels in a boy is approximately normal with a mean of 170 and a standard deviation of 30. Levels above 200 require attention. What is the probability of a boy with a cholesterol between 160 and 205?

Solutions

Expert Solution

Let X be the cholesterol level

X follow Normal with mean 170 and standard deviation 30

that is

then

To find P( 160 < X < 205)

= P( -0.33 < z < 1.17 )

= P( -0.33 < z < 0) +P( 0 < z < 1.17)

= 0.1293 + 0.3790 ( from z table )

= 0.5083

Answer : probability that a boy has cholesterol level between 160 and 205 are 0.5083

Note : From z table ( 0 to z )

P( 0 < z < 0.33 ) =0.1293 ( which is same as P( -0.33 < z < 0)

P( 0 < z < 0.17 ) = 0.3790

a part of the z table is given below

z score 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.02790 0.03188 0.03586
0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535
0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409
0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173
0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793
0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240
0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490
0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524
0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327
0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891
1 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214
1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298
1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147

Related Solutions

Cholesterol levels for a group of women aged 50-59 follow an approximately normal distribution with mean...
Cholesterol levels for a group of women aged 50-59 follow an approximately normal distribution with mean 216.57 milligrams per deciliter (mg/dl). Medical guidelines state that women with cholesterol levels above 240 mg/dl are considered to have high cholesterol and about 29.6% of women fall into this category. 1. What is the Z-score that corresponds to the top 29.6% (or the 70.4-th percentile) of the standard normal distribution? Round your answer to three decimal places. 2. Find the standard deviation of...
Cholesterol levels for a group of women aged 30-39 follow an approximately normal distribution with mean...
Cholesterol levels for a group of women aged 30-39 follow an approximately normal distribution with mean 190.14 milligrams per deciliter (mg/dl). Medical guidelines state that women with cholesterol levels above 240 mg/dl are considered to have high cholesterol and about 9.3% of women fall into this category. 1. What is the Z-score that corresponds to the top 9.3% (or the 90.7-th percentile) of the standard normal distribution? Round your answer to three decimal places. 2. Find the standard deviation of...
The cholesterol levels of an adult can be described by a normal model with a mean...
The cholesterol levels of an adult can be described by a normal model with a mean of 187 ​mg/dL and a standard deviation of 28 What percent of adults do you expect to have cholesterol levels over 210 ​mg/dL? (round two decimal places) ​c) What percent of adults do you expect to have cholesterol levels between 150 and 160 mg/dL?(round two decimal places) d) Estimate the interquartile range of cholesterol levels. IQR= ____ (round to nearest integer) e)Above what value...
The cholesterol levels of an adult can be described by a normal model with a mean...
The cholesterol levels of an adult can be described by a normal model with a mean of 188 ​mg/dL and a standard deviation of 26 ​b) What percent of adults do you expect to have cholesterol levels over 190mg/dL? ​(Round to two decimal places as​ needed.) ​c) What percent of adults do you expect to have cholesterol levels between 160 and 170 mg/dL? ​(Round to two decimal places as​ needed.) ​d) Estimate the interquartile range of cholesterol levels. IQRequals= ​(Round...
[1] The distribution of cholesterol levels of a population of 40-year-olds is approximately normally distributed with...
[1] The distribution of cholesterol levels of a population of 40-year-olds is approximately normally distributed with a mean of 220 mg/deciliter and a standard deviation of 12 mg/deciliter. A. What is the approximate probability that a randomly selected 40-year-old from this population has a cholesterol level of more than 225 mg/deciliter? (Draw an appropriate diagram, find a z-score and indicate your calculator commands.) B. A researcher takes a random sample of 16 people from this population and calculates the average...
The cholesterol levels of women aged 21-40 in Canada are approximately Normally distributed with a mean...
The cholesterol levels of women aged 21-40 in Canada are approximately Normally distributed with a mean of 190 miligrams per decilitre (mg/dl). In July of 2007, a clinical assessment applied in Toronto to random sample of twenty–nine Asian female immigrants aged 21-40 had a mean level of 179.52 mg/dl and a standard deviation of 38 mg/dl. (a) At the 10% level of significance test whether the mean cholesterol level of Asian women is the same as the national average. (b)...
2. Assume the cholesterol levels of adult American women can be described by a Normal distribution...
2. Assume the cholesterol levels of adult American women can be described by a Normal distribution with a mean of 196 mg/dL and a standard deviation of 27 mg/dL. a) What percent of adult women do you expect to have cholesterol levels over 200 mg/dL b) Whatpercentofadultwomendoyouexpecttohavecholesterollevelsbetween170and200 mg/dL? c) Above what value are the highest 15% of women’s cholesterol levels? d) What cholesterol level represents the 98th percentile?
6. The distribution of scores on the SAT is approximately normal with a mean of 500...
6. The distribution of scores on the SAT is approximately normal with a mean of 500 and a standard deviation of 100. For the population of students who have taken the SAT…           A. What percentage have SAT scores greater than 550? B. What is the minimum SAT score needed to be in the highest 10% of the population? C. If the state college only accepts students from the top 60% of the SAT distribution, what is the minimum SAT...
The distribution of weights of United States pennies is approximately normal with a mean of 2.5...
The distribution of weights of United States pennies is approximately normal with a mean of 2.5 grams and a standard deviation of 0.03 grams. (a) What is the probability that a randomly chosen penny weighs less than 2.4 grams? (b) Describe the sampling distribution of the mean weight of 10 randomly chosen pennies. (c) What is the probability that the mean weight of 10 pennies is less than 2.4 grams? (d) Could you estimate the probabilities from (a) and (c)...
Given an approximately normal distribution with a mean of 159 and a standard deviation of 17,...
Given an approximately normal distribution with a mean of 159 and a standard deviation of 17, a) Draw a normal curve and label 1, 2, and 3 standard deviations on both sides on the mean. b) What percent of values are within the interval (142, 176)? c) What percent of values are within the interval (125, 193)? d) What interval contains 99.7% of all values? e) What percent of values are above 176? f) What percent of values are below...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT