Question

In: Physics

A monatomic ideal gas of N atoms has initial temperature T0 and a volume V0, the...

A monatomic ideal gas of N atoms has initial temperature T0 and a volume V0, the gas is allowed to expand slowly to fill a final volume of 7V0 in the following ways:

  1. At constant temperature
  2. At constant pressure
  3. Adiabatically

For each case (a you must determine i, ii, and iii, for b and c do the same) determine (i) the work done by the gas, (ii) the amount of energy transferred to the gas by heating, and (iii) the final temperature (very important). Express the solutions in terms of N, T0, V0, and k.

Solutions

Expert Solution


Related Solutions

A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does...
A monatomic ideal gas has an initial temperature of 381 K. This gas expands and does the same amount of work whether the expansion is adiabatic or isothermal. When the expansion is adiabatic, the final temperature of the gas is 290 K. What is the ratio of the final to the initial volume when the expansion is isothermal?
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133...
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133 ∘C. The gas expands and, in the process, absorbs an amount of heat equal to 1300 J and does an amount of work equal to 2200 J Use R = 8.3145 J/(mol⋅K) for the ideal gas constant.
An ideal monatomic gas is contained in a vessel of constant volume 0.210 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.210 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 13.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. mol (b) Find the specific...
An ideal monatomic gas is contained in a vessel of constant volume 0.350 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.350 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 29.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. in mol (b) Find the...
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm...
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm to a final pressure of 1.0 atm. Calculate w, q, DU, and (where applicable) DH and DT when the expansion is performed (a) reversibly and isothermally, and (b) reversibly and adiabatically. Help Please!!!
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to...
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to 2P0 a) along the path PV = constant, and b) at constant volume. Find the heat added to the gas in each case.
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature t and chemical potential μ. An adsorption site on the solid surface can be either empty (energy ε0 = 0), singly occupied (ε1 = ε), or doubly occupied (ε2 = 2ε) by an atom from the gas. If two atoms adsorb onto the same site, they also interact by a vibrational mode of frequency w. Thus, the energy of a doubly occupied site can...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature...
A solid surface is in diffusive and thermal equilibrium with a monatomic ideal gas at temperature t and chemical potential μ. An adsorption site on the solid surface can be either empty (energy ε0 = 0), singly occupied (ε1 = ε), or doubly occupied (ε2 = 2ε) by an atom from the gas. If two atoms adsorb onto the same site, they also interact by a vibrational mode of frequency w. Thus, the energy of a doubly occupied site can...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT