In: Statistics and Probability
Is there a difference in the yields of different types ofinvestments? The accompanying data provide yields for a one-year certificate of deposit (CD) and a five-year CD for 25 banks. Complete parts a through b below.
Bank One-Year CD Five-Year CD
1 0.45 4.90
2 0.75 4.95
3 0.85 4.90
4 0.25 3.25
5 0.35 4.05
6 0.20 4.00
7 0.50 3.80
8 2.05 4.40
9 0.65 4.70
10 0.75 4.00
11 0.40 4.50
12 0.55 3.50
13 0.25 4.20
14 0.60 5.00
15 1.70 4.10
16 1.00 4.30
17 1.40 4.95
18 2.20 4.70
19 1.05 4.95
20 0.90 4.40
21 0.60 4.40
22 0.50 4.10
23 0.35 3.50
24 1.10 4.35
25 1.90 4.05
a. Construct a 95% confidence interval estimate for the mean yield of one-year CDs.
b. Construct a 95% confidence interval estimate for the mean yield of five-years CDs.
a) For one-year CD's:
∑x = 21.3
∑x² = 26.19
n = 25
Mean , x̅ = Ʃx/n = 21.3/25 = 0.8520
Standard deviation, s = √[(Ʃx² - (Ʃx)²/n)/(n-1)] = √[(26.19-(21.3)²/25)/(25-1)] = 0.5789
95% Confidence interval :
At α = 0.05 and df = n-1 = 24, two tailed critical value, t-crit = T.INV.2T(0.05, 24) = 2.064
Lower Bound = x̅ - t-crit*s/√n = 0.852 - 2.064 * 0.5789/√25 = 0.61
Upper Bound = x̅ + t-crit*s/√n = 0.852 + 2.064 * 0.5789/√25 = 1.09
0.61 < µ < 1.09
b) For Five years CD's:
∑x = 107.95
∑x² = 472.0175
n = 25
Mean , x̅ = Ʃx/n = 107.95/25 = 4.3180
Standard deviation, s = √[(Ʃx² - (Ʃx)²/n)/(n-1)] = √[(472.0175-(107.95)²/25)/(25-1)] = 0.4954
95% Confidence interval :
At α = 0.05 and df = n-1 = 24, two tailed critical value, t-crit = T.INV.2T(0.05, 24) = 2.064
Lower Bound = x̅ - t-crit*s/√n = 4.318 - 2.064 * 0.4954/√25 = 4.11
Upper Bound = x̅ + t-crit*s/√n = 4.318 + 2.064 * 0.4954/√25 = 4.52
4.11 < µ < 4.52