Question

In: Advanced Math

Function   f (x) = a x + b     for IxI < 2 = 0 for x others...

Function   f (x) = a x + b     for IxI < 2

= 0 for x others

   Determinate Fourier series from n= 0 until n= 2

Solutions

Expert Solution


Related Solutions

Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,...
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the Lagrange interpolation F(x, y) that interpolates the above data. Use Lagrangian bi-variate interpolation to solve this and also show the working steps.
Let f(x) = b(x+1), x = 0, 1, 2, 3 be the probability mass function (pmf)...
Let f(x) = b(x+1), x = 0, 1, 2, 3 be the probability mass function (pmf) of a random variable X, where b is constant. A. Find the value of b B. Find the mean μ C. Find the variance σ^2
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)=...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)= f(-7)=
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the...
Suppose f is a twice differentiable function such that f′(x)>0 and f′′(x)<0 everywhere, and consider the following data table. x      0       1       2 f(x)   3       A       B For each part below, determine whether the given values of A and B are possible (i.e., consistent with the information about f′and f′′ given above) or impossible, and explain your answer. a)A= 5, B= 6 (b)A= 5, B= 8 (c)A= 6, B= 6 (d)A= 6, B= 6.1 (e)A= 6, B= 9
Expand the function, f(x) = x, defined over the interval 0 <x <2, in terms of:...
Expand the function, f(x) = x, defined over the interval 0 <x <2, in terms of: A Fourier sine series, using an odd extension of f(x) and A Fourier cosine series, using an even extension of f(x)
Find f 1)f”(x)=-2+12x-12x(Square), f’(0)=12 F(x)=? 2)Find a function f such that f’(x)=5x cube and the line...
Find f 1)f”(x)=-2+12x-12x(Square), f’(0)=12 F(x)=? 2)Find a function f such that f’(x)=5x cube and the line 5x+y=0 is the tangent to the graph of f F(x)=? 3)A particle is moving with the given data. Find the position of the particle a(t)=11sin(t)+4cos(t), s(0)=0, s(2pi)=16 s(t)=? (please i need help)
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing decreasing (b) Apply the First Derivative Test to identify the relative extrema. relative maximum (x, y) = relative minimum (x, y) =
a.  For the following probability density function:                 f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2           &nbsp
a.  For the following probability density function:                 f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2                        = 0 otherwise            find its expectation and variance. b. The two regression lines are 2X - 3Y + 6 = 0 and 4Y – 5X- 8 =0 , compute mean of X and mean of Y. Find correlation coefficient r , estimate y for x =3 and x for y = 3.
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does...
Consider a function f(x) which satisfies the following properties: 1. f(x+y)=f(x) * f(y) 2. f(0) does not equal to 0 3. f'(0)=1 Then: a) Show that f(0)=1. (Hint: use the fact that 0+0=0) b) Show that f(x) does not equal to 0 for all x. (Hint: use y= -x with conditions (1) and (2) above.) c) Use the definition of the derivative to show that f'(x)=f(x) for all real numbers x d) let g(x) satisfy properties (1)-(3) above and let...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT