The function F(x) = x2 - cos(π x) is defined on the
interval 0 ≤ x ≤ 1 radians. Explain how the Intermediate Value
Theorem shows that F(x) = 0 has a solution on the interval 0 < x
< .
if f(x) = -5x^2 sin(5x) and g(x) = x^2 -3x +9 are defined over
the interval (2,4)
write the full MATLAB commands to plot the two functions above
two functions on the same set of axes
2 find the x and y coordinate of all points of intersections
(x,y) that you can clearly see between the two graphs. Round up to
4 decimal
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2
+ (cos(x))^2 (a) Find the open intervals on which the function is
increasing or decreasing. (Enter your answers using interval
notation.) increasing decreasing (b) Apply the First Derivative
Test to identify the relative extrema. relative maximum (x, y) =
relative minimum (x, y) =
Consider the function on the interval (0, 2π).
f(x) = sin(x) cos(x) + 2
(a) Find the open interval(s) on which the function is
increasing or decreasing. (Enter your answers using interval
notation.)
increasing
( )
decreasing
( )
(b) Apply the First Derivative Test to identify all relative
extrema.
relative maxima
(x, y) =
(smaller x-value)
(x, y) =
( )
(larger x-value)
relative minima
(x, y) =
(smaller x-value)
(x, y) =
...
f(t) = 1- t 0<t<1
a function f(t) defined on an interval 0 < t < L is given.
Find the Fourier cosine and sine series of f and sketch the graphs
of the two extensions of f to which these two series converge
1. Find the average value of the function f(x)= 1/ (x^2-9) on
the interval from 0 ≤ x ≤ 1
2. Find the arc-length of the function f(x)= x^2 from 0 ≤ x ≤
2
Find the Fourier Series for the function defined over -5 < x
< 5
f(x) = -2 when -5<x<0 and f(x) = 3 when 0<x<5
You can use either the real or complex form but must show
work.
Plot on Desmos the first 10 terms of the series along with the
original
function.
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,
f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the
Lagrange interpolation F(x, y) that interpolates the above data.
Use Lagrangian bi-variate interpolation to solve this and also show
the working steps.
Consider the function f(x)= 7 - 7x^2/3 defined on the interval
[-1, 1]. State which of the three hypotheses of Rolle’s Theorem
fail(s) for f(x) on the given interval.