Question

In: Physics

An electron is placed in a region with a 1010 V/m electric field directed in the...

An electron is placed in a region with a 1010 V/m electric field directed in the positive x-direction. The electron escapes this region after traveling 14.0 cm. What is the kinetic energy of the electron? What is the particle's velocity? Will a proton placed at the same initial position and traveling through a similar 14.0 cm path acquire the same amount of kinetic energy? Will the proton experience the same change in velocity? Why or why not?

I have seen this question on here before but the velocity portion was not present.

Solutions

Expert Solution


Related Solutions

An electron with velocity v = 2.0x106 m/s directed along +y axis enters in a region...
An electron with velocity v = 2.0x106 m/s directed along +y axis enters in a region of uniform electric field, E = 8.0 x 103 V/m directed along +y axis. What is the magnitude and direction of the acceleration of the electron? How long does it take for the electron to stop instantaneously? Answer: 15 2 a = 1.4x10 m/s , directed along – y-axis, t = 1.4 ns
A uniform electric field is directed out of the page within a circular region of radius...
A uniform electric field is directed out of the page within a circular region of radius R = 2.50 cm. The magnitude of the electric field is given by E = (3.50 × 10-3 V/m•s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)1.50 cm and (b)6.50 cm?
5. An electron moves to the right, entering a region that has a uniform electric field...
5. An electron moves to the right, entering a region that has a uniform electric field directed at you. The direction of the force perceived by the electron is: a. down b. up c. on the right d. towards you e. None of the above
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton...
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton moves from the origin to the point (x, y)=(20.0cm, 50.0cm). a) Through what potential difference does the charge move? b) What is the change in the potential energy of the charge field system? c) An electron is released at rest at the origin and it moves in the +x direction. What would be its speed, Vf, after the electron is released from rest and...
Near the surface of the Earth there is an electric field of about 150 V/m which...
Near the surface of the Earth there is an electric field of about 150 V/m which points downward. Two identical balls with mass 0.407kg are dropped from a height of 2.29m , but one of the balls is positively charged with q1 = 338?C , and the second is negatively charged with q2=-338?C . Use conservation of energy to determine the difference in the speeds of the two balls when they hit the ground. (Neglect air resistance.)
An electron is released in a uniform electric field, and it experiences an electric force of...
An electron is released in a uniform electric field, and it experiences an electric force of 2.2 ✕ 10-14 N downward. What are the magnitude and direction of the electric field? Magnitude ____________ N/C Direction upward, to the left, to the right or downward?
1. An EM wave has a maximum electric field of 250 V / m. Determine the...
1. An EM wave has a maximum electric field of 250 V / m. Determine the average intensity of the wave. a. 120 W/m^2 b. 0.66 W/m^2 c. 170 W/m^2 d. 83 W/m^2 e. 0.89 W/m^2 2. The various colors of visible light differ in: a. frequency and wavelength b. frequency and its speed in a vacuum c. only in wavelength d. only in frequency e. its speed in a vacuum 3. Determine which of the following types of waves...
A uniform electric field of magnitude 40 N/C is directed downward.
A uniform electric field of magnitude 40 N/C is directed downward. What are the magnitude and the direction of the force on a + 4C charge placed in this electric field? 160 N directed upward 160 N directed downward 10 N directed downward 0.1 N directed downward
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude...
An electron with speed 2.75×107 m/s is traveling parallel to a uniform electric field of magnitude 1.20×104 N/C . How far will the electron travel before it stops? How much time will elapse before it returns to its starting point?
1. An electric field (in v/m) varies with postion along the y axis according to E...
1. An electric field (in v/m) varies with postion along the y axis according to E = 1/y. Find the electric potential difference VAB if A is a point on the y axis at y = 5 m and B is a point on the y axis at y = 7 ? VAB = 0.28 volts VAB = 0.34 volts VAB = 0.49 volts VAB = 0.82 volts 2. How does the electric potential at a point x, a finite...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT