Question

In: Physics

An electron is placed in a region with a 1010 V/m electric field directed in the...

An electron is placed in a region with a 1010 V/m electric field directed in the positive x-direction. The electron escapes this region after traveling 14.0 cm. What is the kinetic energy of the electron? What is the particle's velocity? Will a proton placed at the same initial position and traveling through a similar 14.0 cm path acquire the same amount of kinetic energy? Will the proton experience the same change in velocity? Why or why not?

I have seen this question on here before but the velocity portion was not present.

Solutions

Expert Solution


Related Solutions

A uniform electric field of magnitude 240 V/m is directed in the positive x direction. A...
A uniform electric field of magnitude 240 V/m is directed in the positive x direction. A +13.0 µC charge moves from the origin to the point (x, y) = (20.0 cm, 50.0 cm). (a) What is the change in the potential energy of the charge field system? J (b) Through what potential difference does the charge move?
An electron with velocity v = 2.0x106 m/s directed along +y axis enters in a region...
An electron with velocity v = 2.0x106 m/s directed along +y axis enters in a region of uniform electric field, E = 8.0 x 103 V/m directed along +y axis. What is the magnitude and direction of the acceleration of the electron? How long does it take for the electron to stop instantaneously? Answer: 15 2 a = 1.4x10 m/s , directed along – y-axis, t = 1.4 ns
A uniform electric field is directed out of the page within a circular region of radius...
A uniform electric field is directed out of the page within a circular region of radius R = 2.50 cm. The magnitude of the electric field is given by E = (3.50 × 10-3 V/m•s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)1.50 cm and (b)6.50 cm?
Part A An electron is moving east in a uniform electric field of 1.52 N/C directed...
Part A An electron is moving east in a uniform electric field of 1.52 N/C directed to the west. At point A, the velocity of the electron is 4.54×105 m/s pointed toward the east. What is the speed of the electron when it reaches point B, which is a distance of 0.360 m east of point A? Part B A proton is moving in the uniform electric field of part A. At point A, the velocity of the proton is...
5. An electron moves to the right, entering a region that has a uniform electric field...
5. An electron moves to the right, entering a region that has a uniform electric field directed at you. The direction of the force perceived by the electron is: a. down b. up c. on the right d. towards you e. None of the above
5. A proton and an electron are in a uniform electric field with magnitude 45 V/C....
5. A proton and an electron are in a uniform electric field with magnitude 45 V/C. Which particle has the larger magnitude acceleration, and what is the magnitude of the acceleration? (e = 1.6×10−19 C, mp = 1.67×10−27 kg, me = 9.11×10−31 kg) A. the electron, 7.9×1012 m/s2 B. the proton, 4.3×1013 m/s2 C. the proton, 4.3×109 m/s2 D. the electron, 7.9×108 m/s2 E. the electron, 7.9×1010 m/s2 6. A +2q point charge is located at the origin (x =...
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton...
A uniform electric field of magnitude E=270V/m is directed in the positive x direction. A proton moves from the origin to the point (x, y)=(20.0cm, 50.0cm). a) Through what potential difference does the charge move? b) What is the change in the potential energy of the charge field system? c) An electron is released at rest at the origin and it moves in the +x direction. What would be its speed, Vf, after the electron is released from rest and...
Near the surface of the Earth there is an electric field of about 150 V/m which...
Near the surface of the Earth there is an electric field of about 150 V/m which points downward. Two identical balls with mass 0.407kg are dropped from a height of 2.29m , but one of the balls is positively charged with q1 = 338?C , and the second is negatively charged with q2=-338?C . Use conservation of energy to determine the difference in the speeds of the two balls when they hit the ground. (Neglect air resistance.)
A) Given an electric field: Ei = ˆx100e−γ z V/m                       Find the associated magnetic field. (...
A) Given an electric field: Ei = ˆx100e−γ z V/m                       Find the associated magnetic field. ( Note: Ei is vector, and ˆx = x hat) B) if this field is normally incident on a uniform lossy medium with Er = 3.0, tan δ = 0.1, and μ = μ0 Initially propagating in air, find both the reflection and transmission coefficients.
An electron is released in a uniform electric field, and it experiences an electric force of...
An electron is released in a uniform electric field, and it experiences an electric force of 2.2 ✕ 10-14 N downward. What are the magnitude and direction of the electric field? Magnitude ____________ N/C Direction upward, to the left, to the right or downward?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT