Question

In: Physics

Consider n=3 state |3,l,j,?? 〉 of the hydrogen atom. Find the energy of each state under...

Consider n=3 state |3,l,j,?? 〉 of the hydrogen atom. Find the energy of each state under weak-field Zeeman splitting for n=3 level of the hydrogen and show them on a diagram.

(no need to find the energy spectrum of the state with fine structure.)

Solutions

Expert Solution

total energy of each state is the sum of energy of the state and the energy due to the splitting of energy levels in the weak field

shift in energy and splitting diagram can be drawn as


Related Solutions

a) Find the energy of an electron in the n=5 state of the hydrogen atom.
a) Find the energy of an electron in the n=5 state of the hydrogen atom. b) Find the energy of an electron in the n=6 state of the hydrogen atom. c) If an electron initially in the n= 6 state falls to the n= 5 state, how much energy must the electron give up? d) If an electron initially in the n= 6 state falls to the n=5 state, what is the wavelength of the photon that will be emitted?
Consider Hydrogen with an electron in the n = 2 state. a) Find the Energy of...
Consider Hydrogen with an electron in the n = 2 state. a) Find the Energy of the electron. The electron is in the 2p state. Then it moves to the 1s state. b) Calculate the energy of the emitted photon. The atom is placed in a magnetic field of 500 T. c) Find the energies of all the emitted photons. Don't worry about electron spin.
Consider an electron in a hydrogen atom in the n=2,l=0 state. At what radius ( in...
Consider an electron in a hydrogen atom in the n=2,l=0 state. At what radius ( in units of a0) is the electron most likely to be found?
a. A hydrogen atom in the n=5 state decays to the n=3 state. What is the...
a. A hydrogen atom in the n=5 state decays to the n=3 state. What is the wavelength of the photon that the hydrogen atom emits? Use hc=1240 nm eV. nm b. While in the first excited state, a hydrogen atom is illuminated by various wavelengths of light. What happens to the hydrogen atom when illuminated by each wavelength? 486.3 nm? 491.3 nm? 335.1 nm? For each wavelength pick from the following choices: "stays in n=2 state" , "jumps to n=3...
Consider the following portion of the energy-level diagram for hydrogen: n=4 –0.1361 × 10–18 J n=3...
Consider the following portion of the energy-level diagram for hydrogen: n=4 –0.1361 × 10–18 J n=3 –0.2420 × 10–18 J n=2 –0.5445 × 10–18 J n=1 –2.178 × 10–18 J In the hydrogen spectrum, what is the wavelength of light associated with the n = 2 to n = 1 electron transition? Please explain. The answer is: 1.22 × 10–7 m.
Consider a hydrogen atom in the ground state. What is the energy of its electron? E=...
Consider a hydrogen atom in the ground state. What is the energy of its electron? E= J Consider a hydrogen atom in an excited state of 2s^1. What is the energy of its electron? E= J
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum...
A hydrogen atom stays in the 3rd excited state (n = 4). Consider of the quantum behavior of the electron, but ignore the quantum behavior of the nucleus. (a) What are the possible values for the quantum number l and what are the corresponding orbitals? Write down the magnitude of each orbital angular momentum (in units of ħ). (b) For each value of l, what are possible values for the quantum number ml and the magnitude of the z component...
A hydrogen atom is in its second excited state, n = 3. PART A Using the...
A hydrogen atom is in its second excited state, n = 3. PART A Using the Bohr model of hydrogen, find the linear momentum. PART B Using the Bohr model of hydrogen, find the angular momentum of the electron in this atom.
An electron (in a hydrogen atom) in the n=5 state drops to the n=2 state by...
An electron (in a hydrogen atom) in the n=5 state drops to the n=2 state by undergoing two successive downward jumps. What are all possible combinations of the resulting photon wavelengths?
Consider the ground state energy of the hydrogen atom E0. Enter the expression you use to...
Consider the ground state energy of the hydrogen atom E0. Enter the expression you use to verify that the ground state energy is 13.6 eV? Use fundamental constants e, me, k and h. E0 = ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT