Question

In: Statistics and Probability

There are two players in the game. Each player can pick any integer number between 1...

There are two players in the game. Each player can pick any integer number between 1 and n. If two numbers are the same then player 1 pays 1 dollar to player 2. If two numbers are different than nothing happens.

(a) Prove that there are no equilibria in pure strategies;

(b) Prove that in the equilibrium each strategy should be played with a positive probability.

(c) Find all NE of the game.

Solutions

Expert Solution


Related Solutions

Coin taking game This game is played between 2 players, player 1 and player 2. There...
Coin taking game This game is played between 2 players, player 1 and player 2. There are two piles of coins. The values of a coin can be any integer. Both players know the values of all coins in both piles. Player 1 makes the first move, and play alternates between the players. A move consists of taking a coin from the top of either of the piles (either player can take from either pile). The game ends when both...
This game is meant for two or more players. In the game, each player starts out...
This game is meant for two or more players. In the game, each player starts out with 50 points, as each player takes a turn rolling the dice; the amount generated by the dice is subtracted from the player’s points. The first player with exactly one point remaining wins. If a player’s remaining points minus the amount generated by the dice results in a value less than one, then the amount should be added to the player’s points. (As an...
Each of two players chooses a positive integer. If player i's integer is greater than player j's integer and less than three times this integer, then player j pays $1 to player i.
Question is based off of Game Theory Mixed strategy and Pure strategy Nash EquilibriumEach of two players chooses a positive integer. If player i's integer is greater than player j's integer and less than three times this integer, then player j pays $1 to player i. If player i's integer is at least three times greater than player j's integer, then player i pays $1 to player j. If the integers are equal, no payment is made. Each player's preferences...
Two players (player A and player B) are playing a game against each other repeatedly until...
Two players (player A and player B) are playing a game against each other repeatedly until one is bankrupt. When a player wins a game they take $1 from the other player. All plays of the game are independent and identical. Suppose player A starts with $6 and player B starts with $6. If player A wins a game with probability 0.5, what is the probability the game ends (someone loses all their money) on exactly the 10th play of...
(10 marks) Two players (player A and player B) are playing a game against each other...
Two players (player A and player B) are playing a game against each other repeatedly until one is bankrupt. When a player wins a game they take $1 from the other player. All plays of the game are independent and identical. a) Suppose player A starts with $2 and player B starts with $1. If player A wins a game with probability p, what is the probability that player A wins all the money? b) Suppose player A starts with...
Suppose that two players are playing the following game. Player 1 can choose either Top or...
Suppose that two players are playing the following game. Player 1 can choose either Top or Bottom, and Player 2 can choose either Left or Right. The payoffs are given in the following table: player 2: left right   player 1 : Top: (1,2) (2,4) bottom: (3,4) (0,3) where the number on the left is the payoff to Player 1, and the number on the right is the payoff to Player 2. A) (2 points) Does Player 1 have a dominant...
Suppose that two players are playing the following game. Player 1 can choose either Top or...
Suppose that two players are playing the following game. Player 1 can choose either Top or Bottom, and Player 2 can choose either Left or Right. The payoffs are given in the following table    Player 2 Player 1 Left Right Top 6 5 9 4 Bottom 7 4 5 3 where the number on the left is the payoff to Player A, and the number on the right is the payoff to Player B. A) (4 points) Does player...
Consider a game with two players, each of whom has two types. The types of player...
Consider a game with two players, each of whom has two types. The types of player 1 are T1 = (a,b). The types of player 2 are T2 = (c,d). Suppose the beliefs of the types are p1(c/a) = p2(a/c) = 0.25 and p1(c/b) = p2(a/d) = 0.75. Is there a common prior? If yes, construct one; if no, prove why not.
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is -3, and the payoff for B is -2. Player B Strategy 1 Strategy 2 Player A Strategy 1 (-3,-2) (10,0) Strategy 2 (0,8) (0,0) How many pure strategy Nash equilibria does...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1, and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT